git clone https://github.com/Yuxinn-J/Scenimefy.git
cd Scenimefy
conda env create -f Semi_translation/environment.yml
.wget https://github.com/Yuxinn-J/Scenimefy/releases/download/v0.1.0/Shinkai_net_G.pth -P Semi_translation/pretrained_models/shinkai-test/
Inference! Simply run the following command, or refer the ./Semi_translation/script/test.sh
for detailed usage:
cd Semi_translation
python test.py --dataroot ./datasets/Sample --name shinkai-test --CUT_mode CUT --model cut --phase test --epoch Shinkai --preprocess none
./Semi_translation/results/shinkai-test/
by default. ./Semi_translation/datasets/Sample
, and place your test images in testA
. git clone https://huggingface.co/spaces/YuxinJ/Scenimefy
pip install -r requirements.txt
pip install gradio
python app.py
./datasets/unpaired_s2a
, and rename as trainA
.Anime_dataset/README.md
. Place it in ./datasets/unpaired_s2a
, and rename as trainB
../datasets/pair_s2a
Refer to the ./Semi_translation/script/train.sh
file, or use the following command:
python train.py --name exp_shinkai --CUT_mode CUT --model semi_cut \
--dataroot ./datasets/unpaired_s2a --paired_dataroot ./datasets/pair_s2a \
--checkpoints_dir ./pretrained_models \
--dce_idt --lambda_VGG -1 --lambda_NCE_s 0.05 \
--use_curriculum --gpu_ids 0
--lambda_VGG 0.2
.Pseudo_generation/README.md
.
Seg_selection/README.md
.It is a high-quality anime scene dataset comprising 5,958 images with the following features:
In compliance with copyright regulations, we cannot directly release the anime images. However, you can conveniently prepare the dataset following instructions here.
If you find this work useful for your research, please consider citing our paper:
@inproceedings{jiang2023scenimefy,
title={Scenimefy: Learning to Craft Anime Scene via Semi-Supervised Image-to-Image Translation},
author={Jiang, Yuxin and Jiang, Liming and Yang, Shuai and Loy, Chen Change},
booktitle={ICCV},
year={2023}
}
Our code is mainly developed based on Cartoon-StyleGAN and Hneg_SRC. We thank facebook for their contribution of Mask2Former.
Distributed under the S-Lab License. See LICENSE.md for more information.