Segmentation Models Pytroch 3D
Python library with Neural Networks for Volume (3D) Segmentation based on PyTorch.
This library is based on famous Segmentation Models Pytorch library for images. Most of the documentation can be used directly from there.
Installation
- Type 1:
pip install segmentation-models-pytorch-3d
- Type 2: Copy
segmentation_models_pytorch_3d
folder from this repository in your project folder.
Quick start
Segmentation model is just a PyTorch nn.Module, which can be created as easy as:
import segmentation_models_pytorch_3d as smp
import torch
model = smp.Unet(
encoder_name="efficientnet-b0", # choose encoder, e.g. resnet34
in_channels=1, # model input channels (1 for gray-scale volumes, 3 for RGB, etc.)
classes=3, # model output channels (number of classes in your dataset)
)
# Shape of input (B, C, H, W, D). B - batch size, C - channels, H - height, W - width, D - depth
res = model(torch.randn(4, 1, 64, 64, 64))
Models
Architectures
Encoders
The following is a list of supported encoders in the SMP. Select the appropriate family of encoders and click to expand the table and select a specific encoder and its pre-trained weights (encoder_name
and encoder_weights
parameters).
ResNet
|Encoder |Weights |Params, M |
|--------------------------------|:------------------------------:|:------------------------------:|
|resnet18 |imagenet / ssl / swsl |11M |
|resnet34 |imagenet |21M |
|resnet50 |imagenet / ssl / swsl |23M |
|resnet101 |imagenet |42M |
|resnet152 |imagenet |58M |
ResNeXt
|Encoder |Weights |Params, M |
|--------------------------------|:------------------------------:|:------------------------------:|
|resnext50_32x4d |imagenet / ssl / swsl |22M |
|resnext101_32x4d |ssl / swsl |42M |
|resnext101_32x8d |imagenet / instagram / ssl / swsl|86M |
|resnext101_32x16d |instagram / ssl / swsl |191M |
|resnext101_32x32d |instagram |466M |
|resnext101_32x48d |instagram |826M |
SE-Net
|Encoder |Weights |Params, M |
|--------------------------------|:------------------------------:|:------------------------------:|
|senet154 |imagenet |113M |
|se_resnet50 |imagenet |26M |
|se_resnet101 |imagenet |47M |
|se_resnet152 |imagenet |64M |
|se_resnext50_32x4d |imagenet |25M |
|se_resnext101_32x4d |imagenet |46M |
DenseNet
|Encoder |Weights |Params, M |
|--------------------------------|:------------------------------:|:------------------------------:|
|densenet121 |imagenet |6M |
|densenet169 |imagenet |12M |
|densenet201 |imagenet |18M |
|densenet161 |imagenet |26M |
EfficientNet
|Encoder |Weights |Params, M |
|--------------------------------|:------------------------------:|:------------------------------:|
|efficientnet-b0 |imagenet |4M |
|efficientnet-b1 |imagenet |6M |
|efficientnet-b2 |imagenet |7M |
|efficientnet-b3 |imagenet |10M |
|efficientnet-b4 |imagenet |17M |
|efficientnet-b5 |imagenet |28M |
|efficientnet-b6 |imagenet |40M |
|efficientnet-b7 |imagenet |63M |
DPN
|Encoder |Weights |Params, M |
|--------------------------------|:------------------------------:|:------------------------------:|
|dpn68 |imagenet |11M |
|dpn68b |imagenet+5k |11M |
|dpn92 |imagenet+5k |34M |
|dpn98 |imagenet |58M |
|dpn107 |imagenet+5k |84M |
|dpn131 |imagenet |76M |
VGG
|Encoder |Weights |Params, M |
|--------------------------------|:------------------------------:|:------------------------------:|
|vgg11 |imagenet |9M |
|vgg11_bn |imagenet |9M |
|vgg13 |imagenet |9M |
|vgg13_bn |imagenet |9M |
|vgg16 |imagenet |14M |
|vgg16_bn |imagenet |14M |
|vgg19 |imagenet |20M |
|vgg19_bn |imagenet |20M |
Mix Vision Transformer
Backbone from SegFormer pretrained on Imagenet! Can be used with other decoders from package, you can combine Mix Vision Transformer with Unet, FPN and others!
Limitations:
- encoder is **not** supported by Linknet, Unet++
- encoder is supported by FPN only for encoder **depth = 5**
|Encoder |Weights |Params, M |
|--------------------------------|:------------------------------:|:------------------------------:|
|mit_b0 |imagenet |3M |
|mit_b1 |imagenet |13M |
|mit_b2 |imagenet |24M |
|mit_b3 |imagenet |44M |
|mit_b4 |imagenet |60M |
|mit_b5 |imagenet |81M |
MobileOne
Apple's "sub-one-ms" Backbone pretrained on Imagenet! Can be used with all decoders.
Note: In the official github repo the s0 variant has additional num_conv_branches, leading to more params than s1.
|Encoder |Weights |Params, M |
|--------------------------------|:------------------------------:|:------------------------------:|
|mobileone_s0 |imagenet |4.6M |
|mobileone_s1 |imagenet |4.0M |
|mobileone_s2 |imagenet |6.5M |
|mobileone_s3 |imagenet |8.8M |
|mobileone_s4 |imagenet |13.6M |
Timm 3D encoders
We now support encoders from timm_3d library. Full list available here. To use them add tu-
before encoder name.
Example:
encoder_name = 'tu-maxvit_base_tf_224.in21k'
model = smp.Unet(
encoder_name=encoder_name,
encoder_weights=None,
in_channels=3,
classes=1,
)
Notes for 3D version
Input size
Recommended input size for backbones can be calculated as: K = pow(N, 2/3)
.
Where N - is size for input image for the same model in 2D variant.
For example for N = 224, K = 32. For N = 512, K = 64.
Strides
Typical strides for 2D case is 2 for H and W. It applied depth
times (in almost all cases 5 times). So input image reduced from (224, 224) to (7, 7) on final layers. For 3D case because of very massive input, it's sometimes useful to control strides for every dimension independently. For this you can use input variable strides
, which default values is: strides=((2, 2, 2), (2, 2, 2), (2, 2, 2), (2, 2, 2), (2, 2, 2))
. Example:
Let's say you have input data of size: (224, 128, 12). You can use strides like that:
((2, 2, 2), (4, 2, 1), (2, 2, 2), (2, 2, 1), (1, 2, 3)). Output shape for these strides will be: (7, 4, 1)
import segmentation_models_pytorch_3d as smp
import torch
model = smp.Unet(
encoder_name="resnet50",
in_channels=1,
strides=((2, 2, 2), (4, 2, 1), (2, 2, 2), (2, 2, 1), (1, 2, 3)),
classes=3,
)
res = model(torch.randn(4, 1, 224, 128, 12))
Note: Strides currently supported by resnet
-family and densenet
models with Unet
decoder only.
Related repositories
Citation
If you find this code useful, please cite it as:
@article{solovyev20223d,
title={3D convolutional neural networks for stalled brain capillary detection},
author={Solovyev, Roman and Kalinin, Alexandr A and Gabruseva, Tatiana},
journal={Computers in Biology and Medicine},
volume={141},
pages={105089},
year={2022},
publisher={Elsevier},
doi={10.1016/j.compbiomed.2021.105089}
}
To Do List
- Support for strides for all encoders