GDELT Project: The GDELT project monitors the world's broadcast, print, and web news from nearly every corner of every country in over 100 languages and identifies the people, locations, organizations, themes, sources, emotions, counts, quotes, images and events driving our global society every second of every day, creating a free open platform for computing on the entire world.
The GDELT universe being quite large, its data format is by essence complex and convoluted. Official documentation can be found here:
This project has been built to make GDELT v2 environment easy to load on a Spark based environment.
While the v1.0
version only came with a GDELT data model (case classes), a set of parsers and all its reference data, v2.0
embeds the Goose library packaged for Scala 2.11
.
It is planned to later enrich this library with advance analytics and libraries I gathered / created over the past few years.
spark-gdelt project has been built for Scala 2.11 and Spark 2.1.0 and is available on Maven central.
<dependency>
<groupId>com.aamend.spark</groupId>
<artifactId>spark-gdelt</artifactId>
<version>x.y.z</version>
</dependency>
Also available as a spark package, include this package in your Spark Applications as follows
spark-shell --packages com.aamend.spark:spark-gdelt:x.y.z
Loading core GDELT files (unzipped) as Dataset[_]
.
Note we support both english and translingual files, V2 only.
import com.aamend.spark.gdelt._
val gdeltEventDS: Dataset[Event] = spark.read.gdeltEvent("/path/to/event.csv")
val gdeltGkgDS: Dataset[GKGEvent] = spark.read.gdeltGkg("/path/to/gkg.csv")
val gdeltMention: Dataset[Mention] = spark.read.gdeltMention("/path/to/mention.csv")
Here is an example of Dataset[Event]
+---------+----------+--------------------+--------------------+------+--------------+------------------+------------------+--------------------+---------+-----------+----------+-----------+-----------+--------------------+--------------------+--------------------+----------+--------------------+
| eventId| eventDay| actor1Code| actor2Code|isRoot|cameoEventCode|cameoEventBaseCode|cameoEventRootCode| quadClass|goldstein|numMentions|numSources|numArticles| avgTone| actor1Geo| actor2Geo| eventGeo| dateAdded| sourceUrl|
+---------+----------+--------------------+--------------------+------+--------------+------------------+------------------+--------------------+---------+-----------+----------+-----------+-----------+--------------------+--------------------+--------------------+----------+--------------------+
|741462369|2008-03-25|[USA,UNITED STATE...| [,,,,,,,,,]| false| 050| 050| 05| VERBAL_COOPERATION| 3.5| 4| 1| 4| 1.1655011|[COUNTRY,United S...|[UNKNOWN,,,,,[NaN...|[COUNTRY,United S...|2018-03-23|https://www.citiz...|
|741462370|2017-03-23| [,,,,,,,,,]|[USA,CALIFORNIA,U...| true| 100| 100| 10| VERBAL_CONFLICT| -5.0| 3| 1| 3| -1.2836186|[UNKNOWN,,,,,[NaN...|[USCITY,San Franc...|[USCITY,San Franc...|2018-03-23|https://www.nytim...|
|741462371|2017-03-23| [,,,,,,,,,]|[USACVL,NORTH CAR...| true| 043| 043| 04| VERBAL_COOPERATION| 2.8| 8| 1| 8| 0.9041591|[UNKNOWN,,,,,[NaN...|[USSTATE,North Ca...|[USSTATE,North Ca...|2018-03-23|http://www.charlo...|
|741462372|2017-03-23|[EDU,INTELLECTUAL...|[CHN,CHINA,CHN,,,...| true| 111| 111| 11| VERBAL_CONFLICT| -2.0| 10| 1| 10| -2.2959185|[WORLDCITY,Guangz...|[WORLDCITY,Guangz...|[WORLDCITY,Guangz...|2018-03-23|https://www.teleg...|
|741462373|2017-03-23|[GOV,GOVERNMENT,,...| [,,,,,,,,,]| false| 014| 014| 01| VERBAL_COOPERATION| 0.0| 10| 1| 10| 2.5117738|[WORLDSTATE,Bay O...|[UNKNOWN,,,,,[NaN...|[WORLDSTATE,Bay O...|2018-03-23|http://www.nzhera...|
|741462374|2017-03-23|[USA,UNITED STATE...| [,,,,,,,,,]| false| 0831| 083| 08|MATERIAL_COOPERATION| 5.0| 4| 1| 4| -2.259887|[USCITY,Willow Cr...|[UNKNOWN,,,,,[NaN...|[USCITY,Willow Cr...|2018-03-23|https://www.relig...|
|741462375|2017-03-23|[USA,UNITED STATE...|[GOV,PRESIDENT,,,...| true| 110| 110| 11| VERBAL_CONFLICT| -2.0| 1| 1| 1|-0.63897765|[COUNTRY,Russia,R...|[COUNTRY,Russia,R...|[COUNTRY,Russia,R...|2018-03-23|http://www.tribun...|
|741462376|2017-03-23|[USA,UNITED STATE...|[RUSGOV,RUSSIA,RU...| true| 110| 110| 11| VERBAL_CONFLICT| -2.0| 1| 1| 1|-0.63897765|[COUNTRY,North Ko...|[COUNTRY,North Ko...|[COUNTRY,North Ko...|2018-03-23|http://www.tribun...|
|741462377|2017-03-23|[USA,NORTH CAROLI...|[USACVL,UNITED ST...| true| 042| 042| 04| VERBAL_COOPERATION| 1.9| 2| 1| 2| 0.9041591|[USCITY,Chapel Hi...|[USCITY,Chapel Hi...|[USCITY,Chapel Hi...|2018-03-23|http://www.charlo...|
|741462378|2017-03-23|[USACVL,NORTH CAR...| [,,,,,,,,,]| true| 042| 042| 04| VERBAL_COOPERATION| 1.9| 8| 1| 8| 0.9041591|[USCITY,Chapel Hi...|[UNKNOWN,,,,,[NaN...|[USCITY,Chapel Hi...|2018-03-23|http://www.charlo...|
|741462379|2017-03-23|[USACVL,UNITED ST...|[USA,NORTH CAROLI...| true| 043| 043| 04| VERBAL_COOPERATION| 2.8| 2| 1| 2| 0.9041591|[USSTATE,North Ca...|[USSTATE,North Ca...|[USSTATE,North Ca...|2018-03-23|http://www.charlo...|
|741462380|2017-03-23|[USAGOV,UNITED ST...|[USAMED,UNITED ST...| false| 036| 036| 03| VERBAL_COOPERATION| 4.0| 1| 1| 1|-0.75376886|[USCITY,White Hou...|[USCITY,White Hou...|[USCITY,White Hou...|2018-03-23|http://www.breitb...|
|741462381|2017-03-23|[chr,CHEROKEE,,,c...| [,,,,,,,,,]| true| 193| 193| 19| MATERIAL_CONFLICT| -10.0| 5| 1| 5| -1.4614646|[USSTATE,Michigan...|[UNKNOWN,,,,,[NaN...|[USSTATE,Michigan...|2018-03-23|https://jalopnik....|
|741462382|2018-02-21|[CAN,CANADA,CAN,,...|[VNM,VIETNAM,VNM,...| false| 043| 043| 04| VERBAL_COOPERATION| 2.8| 2| 1| 2| -12.418301|[COUNTRY,Canada,C...|[COUNTRY,Canada,C...|[COUNTRY,Canada,C...|2018-03-23|http://calgarysun...|
|741462383|2018-02-21|[CAN,CANADA,CAN,,...|[VNM,VIETNAM,VNM,...| false| 043| 043| 04| VERBAL_COOPERATION| 2.8| 8| 1| 8| -12.418301|[COUNTRY,Canada,C...|[COUNTRY,Vietnam ...|[COUNTRY,Canada,C...|2018-03-23|http://calgarysun...|
|741462384|2018-02-21|[DEU,GERMANY,DEU,...|[GOV,GOVERNMENT,,...| false| 036| 036| 03| VERBAL_COOPERATION| 4.0| 14| 7| 14| -0.9155244|[WORLDCITY,Berlin...|[COUNTRY,Mali,ML,...|[WORLDCITY,Berlin...|2018-03-23|https://www.barri...|
|741462385|2018-02-21|[DEU,GERMANY,DEU,...|[GOV,GOVERNMENT,,...| false| 036| 036| 03| VERBAL_COOPERATION| 4.0| 4| 2| 4|-0.18219218|[WORLDCITY,Berlin...|[COUNTRY,Mali,ML,...|[COUNTRY,Mali,ML,...|2018-03-23|http://lethbridge...|
|741462386|2018-02-21|[EDU,STUDENTS AND...|[UAF,GUNMAN,,,,,,...| false| 180| 180| 18| MATERIAL_CONFLICT| -9.0| 1| 1| 1| -1.7881706|[USCITY,Baltimore...|[USCITY,Baltimore...|[USCITY,Baltimore...|2018-03-23|http://www.watert...|
|741462387|2018-02-21|[GOV,GOVERNMENT,,...|[DEU,GERMANY,DEU,...| false| 036| 036| 03| VERBAL_COOPERATION| 4.0| 14| 7| 14| -0.9155244|[COUNTRY,Mali,ML,...|[WORLDCITY,Berlin...|[WORLDCITY,Berlin...|2018-03-23|https://www.barri...|
|741462388|2018-02-21|[GOV,GOVERNMENT,,...|[DEU,GERMANY,DEU,...| false| 036| 036| 03| VERBAL_COOPERATION| 4.0| 4| 2| 4|-0.18219218|[COUNTRY,Mali,ML,...|[WORLDCITY,Berlin...|[COUNTRY,Mali,ML,...|2018-03-23|http://lethbridge...|
+---------+----------+--------------------+--------------------+------+--------------+------------------+------------------+--------------------+---------+-----------+----------+-----------+-----------+--------------------+--------------------+--------------------+----------+--------------------+
import com.aamend.spark.gdelt._
val countryCodes: Dataset[CountryCode] = spark.loadCountryCodes
val gcam: Dataset[GcamCode] = spark.loadGcams
val cameoEvent: Dataset[CameoCode] = spark.loadCameoEventCodes
val cameoType: Dataset[CameoCode] = spark.loadCameoTypeCodes
val cameoGroup: Dataset[CameoCode] = spark.loadCameoGroupCodes
val cameoEthnic: Dataset[CameoCode] = spark.loadCameoEthnicCodes
val cameoReligion: Dataset[CameoCode] = spark.loadCameoReligionCodes
val cameoCountry: Dataset[CameoCode] = spark.loadCameoCountryCodes
Here is an example of Dataset[CameoCode]
+---------+--------------------+
|cameoCode| cameoValue|
+---------+--------------------+
| COP| police forces|
| GOV| government|
| INS| insurgents|
| JUD| judiciary|
| MIL| military|
| OPP|political opposition|
| REB| rebels|
| SEP| separatist rebels|
| SPY| state intelligence|
| UAF|unaligned armed f...|
| AGR| agriculture|
| BUS| business|
| CRM| criminal|
| CVL| civilian|
| DEV| development|
| EDU| education|
| ELI| elites|
| ENV| environmental|
| HLH| health|
| HRI| human rights|
+---------+--------------------+
The main difference between an average and an expert data scientist is the level of curiosity and creativity employed in extracting the value latent in the data. You could build a simple model on top of GDELT, or you could notice and leverage all these URLs mentioned, scrape that content, and use these extended results to discover new insights that exceed the original questions.
We delegate this logic to the excellent Scala library Goose
I decided to embed my own Goose
library in that project for the following reasons
Scala 2.11
compatible (currently 2.9
)Interacting with the Goose library is fairly easy
import com.gravity.goose.{Configuration, Goose}
val conf: Configuration = new Configuration
conf.setEnableImageFetching(false)
conf.setBrowserUserAgent("Mozilla/5.0 (X11; U; Linux x86_64; de; rv:1.9.2.8) Gecko/20100723 Ubuntu/10.04 (lucid) Firefox/3.6.8")
conf.setConnectionTimeout(1000)
conf.setSocketTimeout(1000)
val url = "http://www.bbc.co.uk/news/entertainment-arts-35278872"
val goose: Goose = new Goose(conf)
val article = goose.extractContent(url)
Scraping news articles from URLs in above datasets is done via a Spark ML pipeline
import com.aamend.spark.gdelt.ContentFetcher
val contentFetcher = new ContentFetcher()
.setInputCol("sourceUrl")
.setOutputTitleCol("title")
.setOutputContentCol("content")
.setOutputKeywordsCol("keywords")
.setOutputPublishDateCol("publishDate")
.setOutputDescriptionCol("description")
.setUserAgent("Mozilla/5.0 (X11; U; Linux x86_64; de; rv:1.9.2.8) Gecko/20100723 Ubuntu/10.04 (lucid) Firefox/3.6.8")
.setConnectionTimeout(1000)
.setSocketTimeout(1000)
val contentDF = contentFetcher.transform(gdeltEventDS)
contentDF.show()
The resulting dataframe is as follows
+--------------------+--------------------+--------------------+--------------------+--------------------+------------+
| sourceUrl| description| content| keywords| title| publishDate|
+--------------------+--------------------+--------------------+--------------------+--------------------+------------+
|https://www.thegu...|Parliament passes...|Mariano Rajoy, on...|[MARIANO RAJOY, S...|Mariano Rajoy ous...| 2018-06-01|
+--------------------+--------------------+--------------------+--------------------+--------------------+------------+
With a proper installation of imagemagick, this library can even detect the most representative picture of a given article.
Downloading GDELT image header for each article opens up lots of data science opportunities (face recognition, fake news / propaganda detection).
This, however, requires an installation of imagemagick
on all executors across your Spark cluster.
import com.aamend.spark.gdelt.ContentFetcher
val contentFetcher = new ContentFetcher()
.setInputCol("sourceUrl")
.setOutputImageUrlCol("imageUrl")
.setOutputImageBase64Col("imageBase64")
.setImagemagickConvert("/usr/local/bin/convert")
.setImagemagickIdentify("/usr/local/bin/identify")
val contentDF = contentFetcher.transform(gdeltEventDS)
println(contentDF.rdd.first.getAs[String]("imageBase64"))
The main image is represented as base64 in data URI
data:image/jpeg;width=300;height=180;base64,/9j/4AAQSkZJRgABAQEASABIAA...
You can validate it via any online viewer such as https://codebeautify.org/base64-to-image-converter
source: https://www.theguardian.com/world/2018/jun/01/mariano-rajoy-ousted-as-spain-prime-minister
setInputCol(s: String)
Mandatory, the input column containing URLs to fetch
setOutputTitleCol(s: String)
Optional, the output column to store article title - title will not be fetched if not specified
setOutputContentCol(s: String)
Optional, the output column to store article content - content will not be fetched if not specified
setOutputKeywordsCol(s: String)
Optional, the output column to store article metadata keyword - keywords will not be fetched if not specified
setOutputPublishDateCol(s: String)
Optional, the output column to store article metadata publishDate - date will not be fetched if not specified
setOutputDescriptionCol(s: String)
Optional, the output column to store article metadata description - description will not be fetched if not specified
setOutputImageUrlCol(s: String)
Optional, the output column to store article main image URL - image fetching will be disabled if not specified
setOutputImageBase64Col(s: String)
Optional, the output column to store article main image data URI - image fetching will be disabled if not specified
setImagemagickConvert(s: String)
Optional, the path to imagemagick convert
executable on every spark executors, not used if image fetching is disabled, default: /usr/local/bin/convert
setImagemagickIdentify(s: String)
Optional, the path to imagemagick identify
executable on every spark executors, not used if image fetching is disabled, default: /usr/local/bin/identify
setUserAgent(s: String)
Optional, the user agent to use in Goose HTTP requests, default: Mozilla/5.0
setConnectionTimeout(i: Int)
Optional, the connection timeout, in milliseconds, default: 1000
setSocketTimeout(i: Int)
Optional, the socket timeout, in milliseconds, default: 1000
The main reason I decided to embed a Goose extraction as a ML pipeline is to integrate news content with existing Spark ML functionality. In below example, we extract content of web articles, tokenize words and train a Word2Vec model
val contentFetcher = new ContentFetcher()
.setInputCol("sourceUrl")
.setOutputContentCol("content")
val tokenizer = new Tokenizer()
.setInputCol("content")
.setOutputCol("words")
val word2Vec = new Word2Vec()
.setInputCol("words")
.setOutputCol("features")
val pipeline = new Pipeline()
.setStages(Array(contentFetcher, tokenizer, word2Vec))
val model = pipeline.fit(df)
val words = model.transform(df)
Antoine Amend - [antoine.amend@gmail.com]
Apache License, version 2.0