RecSys.jl is an implementation of the ALS-WR algorithm from "Yunhong Zhou, Dennis Wilkinson, Robert Schreiber and Rong Pan. Large-Scale Parallel Collaborative Filtering for the Netflix Prize. Proceedings of the 4th international conference on Algorithmic Aspects in Information and Management. Shanghai, China pp. 337-348, 2008"
Pkg.clone("https://github.com/abhijithch/RecSys.jl.git")
user_id
, item_id
, ratings
. E.g.: trainingset = DlmFile("ratings.csv", ',', true)
.trainingset = MatFile("ratings.mat", "training")
FileSpec
for any other format.als = ALSWR(trainingset)
train(als, num_iterations, num_factors, lambda)
rmse(als)
to check against training datasetrmse(als, testdataset)
to check against a test datasetsave(als, filename)
als = load(filename)
recommend(als, user_id)
for an existing userrecommend(als, user_ratings)
for a new/anonymous userSee examples for more details: