abhisheks008 / ML-Crate

ML-Crate stands as the ultimate hub for a multitude of exciting ML projects, serving as the go-to resource haven for passionate and dedicated ML enthusiasts!πŸŒŸπŸ’« Devfolio URL, https://devfolio.co/projects/mlcrate-98f9
https://quine.sh/repo/abhisheks008-ML-Crate-409463050
MIT License
205 stars 216 forks source link

[Project Addition]: Sentiment Analysis for Restaurant Reviews #618

Open abhisheks008 opened 5 months ago

abhisheks008 commented 5 months ago

ML-Crate Repository (Proposing new issue)

:red_circle: Project Title : Sentiment Analysis for Restaurant Reviews :red_circle: Aim : The aim is to analyze the reviews collected in the dataset. :red_circle: Dataset : https://www.kaggle.com/datasets/d4rklucif3r/restaurant-reviews :red_circle: Approach : Try to use 3-4 algorithms to implement the models and compare all the algorithms to find out the best fitted algorithm for the model by checking the accuracy scores. Also do not forget to do a exploratory data analysis before creating any model.


πŸ“ Follow the Guidelines to Contribute in the Project :


:red_circle::yellow_circle: Points to Note :


:white_check_mark: To be Mentioned while taking the issue :


Happy Contributing πŸš€

All the best. Enjoy your open source journey ahead. 😎

github-actions[bot] commented 5 months ago

Thank you for creating this issue! We'll look into it as soon as possible. Your contributions are highly appreciated! 😊

SiMi723 commented 5 months ago

Hello Sir @abhisheks008 Full name : Simi GitHub Profile Link : https://github.com/SiMi723 Participant ID (If not, then put NA) : NA Approach for this Project :Implement at least 3-4 different algorithms such as: Logistic Regression Support Vector Machine (SVM) Random Forest Naive Bayes Deep Learning models (e.g., LSTM, BERT) Train and validate each model using appropriate metrics.Use an appropriate algorithm accordingly. What is your participant role? (Mention the Open Source Program name. Eg. HRSoC, GSSoC, GSOC etc.):Contributor(SSOC & GSSoC) Sir,i am really excited to learn the algorithm of machine learning and looking forward to contribute in this project.

pratikringe46 commented 5 months ago

Hey @abhisheks008,

Can you please assign me this issue under SSOC season 3? Full Name: Pratik Ringe Github Participation ID: NA Participant Role: SSOC season 3 My approach: I will be trying 3-4 algos for this: Logistic regression, Naive bayes, SVM, Neural Networks. I have worked on classification and regression models before. The idea would be to implement these model and also provide a comparison between them based on the accuracy and other metrics. I can try using LSTM as well.

Thanks.

aryamanpathak2022 commented 5 months ago

Hello @abhisheks008

Full name: Aryaman Pathak GitHub Profile Link: Profile Participant ID: NA Approach for this Project: I am excited to contribute to the Sentiment Analysis for Restaurant Reviews project. My approach will include:

  1. Exploratory Data Analysis (EDA): Understanding the dataset through visualizations and summary statistics.
  2. Data Preprocessing: Cleaning and preparing the data for analysis, including tokenization, removing stopwords, and other text preprocessing techniques.
  3. Model Implementation: Implementing 3-4 machine learning algorithms such as Logistic Regression, Random Forest, SVM, and Naive Bayes for sentiment analysis.
  4. Model Comparison: Comparing the performance of the models using accuracy scores and other relevant metrics to determine the best-fit model.
  5. Documentation: Documenting the entire process, including the EDA, preprocessing steps, model implementations, comparisons, and conclusions in the README.md file.

What is your participant role?: SSOC (Social Summer of Code)

Additional Information: I am currently working on a similar sentiment analysis project focused on Western news about India, which has given me relevant experience and knowledge. You can view my ongoing project here:Link to the project

Happy Contributing πŸš€

keshav1441 commented 5 months ago

Full name : Keshav Sharma GitHub Profile Link : https://github.com/keshav1441 Participant ID : NA Approach for this Project : My approach towards implementing sentiment analysis for restaurant reviews is , first, collect a dataset of labeled restaurant reviews. Preprocess the text by tokenizing, removing stop words, and normalizing. Use a machine learning model like logistic regression, or a deep learning model like LSTM, to train on the dataset. Finally, evaluate the model's performance using metrics such as accuracy, precision, recall, and F1-score. Participant Role : contributor

abhisheks008 commented 5 months ago

Hello Sir @abhisheks008 Full name : Simi GitHub Profile Link : https://github.com/SiMi723 Participant ID (If not, then put NA) : NA Approach for this Project :Implement at least 3-4 different algorithms such as: Logistic Regression Support Vector Machine (SVM) Random Forest Naive Bayes Deep Learning models (e.g., LSTM, BERT) Train and validate each model using appropriate metrics.Use an appropriate algorithm accordingly. What is your participant role? (Mention the Open Source Program name. Eg. HRSoC, GSSoC, GSOC etc.):Contributor(SSOC & GSSoC) Sir,i am really excited to learn the algorithm of machine learning and looking forward to contribute in this project.

Issue assigned to you @SiMi723

Make sure you implement all these models,

  1. Random Forest
  2. Decision Tree
  3. Logistic Regression
  4. Gradient Boosting
  5. XGBoost
  6. Lasso
  7. Ridge
  8. MLP Classifier
SiMi723 commented 5 months ago

@abhisheks008 Thank you Sir for giving me this opportunity .I will try to implement the above mentioned models.