abuzarmahmood / neuRecommend

Classifier for semi-automated spike-sorting and channel recommendation
2 stars 0 forks source link
              ____                                                   _ 

| _ \ | | | ' \ / \ | | | |) / _ \/ / | ' _ \| '_ \ / \ ' \ / ` | | | | | / || | < / (| () | | | | | | | | | | | / | | | (| | || ||_|\,|| __|\_/|| || ||| || ||_|| ||_,|

Spike waveform classifier aimed at: 1- Removing noise during preprocessing for improved clustering 1.5- Output from classifier provides an additional high quality feature for clustering on 2- Recommending electrodes with neurons for user ease

== Note:

############################################################

Dataset

############################################################ Aiming for a 2GB dataset, half and half for spikes and noise.

== Suggestion for updating dataset Add maximum diversity of both noise and spike clusters (i.e. if we have a total of 2000 neurons, and space for 100,000 waveforms, then every neuron should contribute 100,000/2000 waveforms if possible)

############################################################

Integration

############################################################ Aimed at being integrated into blech_clust/blech_process.py, prior to actually performing clustering

== Method of operation:

############################################################

Future Challenges

############################################################

############################################################

Experimentation, Model Registry, Data Availability

############################################################ Experimentation and model + data tracking is done on Neptune.ai. These details are not currently available publicly. Dataset used here can be accessed at https://drive.google.com/drive/folders/1i1WPL7gt0ckvpuGVoZKfnu27bRRVUQEX?usp=sharing