Datasets for our new paper: "Benchmarking cell-type clustering methods for spatially resolved transcriptomics data" https://doi.org/10.1093/bib/bbac475.
If you find this repo useful please cite:
@article{10.1093/bib/bbac475,
author = {Cheng, Andrew and Hu, Guanyu and Li, Wei Vivian},
title = "{Benchmarking cell-type clustering methods for spatially resolved transcriptomics data}",
journal = {Briefings in Bioinformatics},
year = {2022},
month = {11},
issn = {1477-4054},
doi = {10.1093/bib/bbac475}
}
Benchmark-CTCM-ST
│ README.md
└───Dataset1/
│ └───images_sd0.5/
│ │ rgb_img1.png #Simulated images for replicate 1 with standard deviation 0.5
│ │ rgb_img2.png
│ │ ...
│ └───images_sd5/
│ │ rgb_img1.png
│ │ ...
│ └───images_sd10/
│ │ rgb_img1.png
│ │ ...
│ └───images_sd25/
│ │ rgb_img1.png
│ │ ...
│ └───images_sd50/
│ │ rgb_img1.png
│ │ ...
│ └───simcounts/
│ │ Dataset1_counts1.rds #Simulated counts for replicate 1
│ │ Dataset1_counts2.rds
│ │ ...
│ └───spatial_info/
│ │ spatial_trans1.tsv #Pixel-mapped spatial coordinates
│ │ spatial_trans2.tsv
│ │ ...
│ └───true_cl/
│ │ Dataset1_true_cl1.rds #Cell types assigned through RShiny
│ │ Dataset1_true_cl2.rds
│ │ ...
A .rds file containing:
A .tsv file containing 3 columns:
A .png image with shape (288, 288, 3) generated with a standard deviations of 0.5, 5, 10, 25, and 50.