adithya-s-k / omniparse

Ingest, parse, and optimize any data format ➡️ from documents to multimedia ➡️ for enhanced compatibility with GenAI frameworks
https://omniparse.cognitivelab.in/
GNU General Public License v3.0
5.71k stars 466 forks source link
ingestion-api ocr omniparser parse-server parser-library vision-transformer web-crawler whisper-api

OmniParse

OmniParse GitHub Stars GitHub Forks GitHub Issues GitHub Pull Requests License

[!IMPORTANT]

OmniParse is a platform that ingests and parses any unstructured data into structured, actionable data optimized for GenAI (LLM) applications. Whether you are working with documents, tables, images, videos, audio files, or web pages, OmniParse prepares your data to be clean, structured, and ready for AI applications such as RAG, fine-tuning, and more

Try it out

Open In Colab

Intro

https://github.com/adithya-s-k/omniparse/assets/27956426/457d8b5b-9573-44da-8bcf-616000651a13

Features

✅ Completely local, no external APIs \ ✅ Fits in a T4 GPU \ ✅ Supports ~20 file types \ ✅ Convert documents, multimedia, and web pages to high-quality structured markdown \ ✅ Table extraction, image extraction/captioning, audio/video transcription, web page crawling \ ✅ Easily deployable using Docker and Skypilot \ ✅ Colab friendly \ ✅ Interative UI powered by Gradio

Why OmniParse ?

It's challenging to process data as it comes in different shapes and sizes. OmniParse aims to be an ingestion/parsing platform where you can ingest any type of data, such as documents, images, audio, video, and web content, and get the most structured and actionable output that is GenAI (LLM) friendly.

Installation

[!IMPORTANT] The server only works on Linux-based systems. This is due to certain dependencies and system-specific configurations that are not compatible with Windows or macOS.

git clone https://github.com/adithya-s-k/omniparse
cd omniparse

Create a Virtual Environment:

conda create -n omniparse-venv python=3.10
conda activate omniparse-venv

Install Dependencies:

poetry install
# or
pip install -e .
# or
pip install -r pyproject.toml

🛳️ Docker

To use OmniParse with Docker, execute the following commands:

  1. Pull the OmniParse API Docker image from Docker Hub:
  2. Run the Docker container, exposing port 8000: 👉🏼Docker Image
    docker pull savatar101/omniparse:0.1
    # if you are running on a gpu 
    docker run --gpus all -p 8000:8000 savatar101/omniparse:0.1
    # else
    docker run -p 8000:8000 savatar101/omniparse:0.1

Alternatively, if you prefer to build the Docker image locally: Then, run the Docker container as follows:

docker build -t omniparse .
# if you are running on a gpu
docker run --gpus all -p 8000:8000 omniparse
# else
docker run -p 8000:8000 omniparse

Usage

Run the Server:

python server.py --host 0.0.0.0 --port 8000 --documents --media --web

Download Models: If you want to download the models before starting the server

python download.py --documents --media --web

Supported Data Types

Type Supported Extensions
Documents .doc, .docx, .pdf, .ppt, .pptx
Images .png, .jpg, .jpeg, .tiff, .bmp, .heic
Video .mp4, .mkv, .avi, .mov
Audio .mp3, .wav, .aac
Web dynamic webpages, http://.com

API Endpoints

> Client library compatible with Langchain, llamaindex, and haystack integrations coming soon. - [API Endpoints](#api-endpoints) - [Document Parsing](#document-parsing) - [Parse Any Document](#parse-any-document) - [Parse PDF](#parse-pdf) - [Parse PowerPoint](#parse-powerpoint) - [Parse Word Document](#parse-word-document) - [Media Parsing](#media-parsing) - [Parse Any Media](#parse-any-media) - [Parse Image](#parse-image) - [Process Image](#process-image) - [Parse Video](#parse-video) - [Parse Audio](#parse-audio) - [Website Parsing](#website-parsing) - [Parse Website](#parse-website) ### Document Parsing #### Parse Any Document Endpoint: `/parse_document` Method: POST Parses PDF, PowerPoint, or Word documents. Curl command: ``` curl -X POST -F "file=@/path/to/document" http://localhost:8000/parse_document ``` #### Parse PDF Endpoint: `/parse_document/pdf` Method: POST Parses PDF documents. Curl command: ``` curl -X POST -F "file=@/path/to/document.pdf" http://localhost:8000/parse_document/pdf ``` #### Parse PowerPoint Endpoint: `/parse_document/ppt` Method: POST Parses PowerPoint presentations. Curl command: ``` curl -X POST -F "file=@/path/to/presentation.ppt" http://localhost:8000/parse_document/ppt ``` #### Parse Word Document Endpoint: `/parse_document/docs` Method: POST Parses Word documents. Curl command: ``` curl -X POST -F "file=@/path/to/document.docx" http://localhost:8000/parse_document/docs ``` ### Media Parsing #### Parse Image Endpoint: `/parse_image/image` Method: POST Parses image files (PNG, JPEG, JPG, TIFF, WEBP). Curl command: ``` curl -X POST -F "file=@/path/to/image.jpg" http://localhost:8000/parse_media/image ``` #### Process Image Endpoint: `/parse_image/process_image` Method: POST Processes an image with a specific task. Possible task inputs: `OCR | OCR with Region | Caption | Detailed Caption | More Detailed Caption | Object Detection | Dense Region Caption | Region Proposal` Curl command: ``` curl -X POST -F "image=@/path/to/image.jpg" -F "task=Caption" -F "prompt=Optional prompt" http://localhost:8000/parse_media/process_image ``` Arguments: - `image`: The image file - `task`: The processing task (e.g., Caption, Object Detection) - `prompt`: Optional prompt for certain tasks #### Parse Video Endpoint: `/parse_media/video` Method: POST Parses video files (MP4, AVI, MOV, MKV). Curl command: ``` curl -X POST -F "file=@/path/to/video.mp4" http://localhost:8000/parse_media/video ``` #### Parse Audio Endpoint: `/parse_media/audio` Method: POST Parses audio files (MP3, WAV, FLAC). Curl command: ``` curl -X POST -F "file=@/path/to/audio.mp3" http://localhost:8000/parse_media/audio ``` ### Website Parsing #### Parse Website Endpoint: `/parse_website/parse` Method: POST Parses a website given its URL. Curl command: ``` curl -X POST -H "Content-Type: application/json" -d '{"url": "https://example.com"}' http://localhost:8000/parse_website ``` Arguments: - `url`: The URL of the website to parse

Coming Soon/ RoadMap

🦙 LlamaIndex | Langchain | Haystack integrations coming soon 📚 Batch processing data ⭐ Dynamic chunking and structured data extraction based on specified Schema
🛠️ One magic API: just feed in your file prompt what you want, and we will take care of the rest
🔧 Dynamic model selection and support for external APIs
📄 Batch processing for handling multiple files at once
📦 New open-source model to replace Surya OCR and Marker

Final goal: replace all the different models currently being used with a single MultiModel Model to parse any type of data and get the data you need.

Limitations

There is a need for a GPU with 8~10 GB minimum VRAM as we are using deep learning models. \

Document Parsing Limitations \

License

OmniParse is licensed under the GPL-3.0 license. See LICENSE for more information. The project uses Marker under the hood, which has a commercial license that needs to be followed. Here are the details:

Commercial Usage

Marker and Surya OCR Models are designed to be as widely accessible as possible while still funding development and training costs. Research and personal usage are always allowed, but there are some restrictions on commercial usage. The weights for the models are licensed under cc-by-nc-sa-4.0. However, this restriction is waived for any organization with less than $5M USD in gross revenue in the most recent 12-month period AND less than $5M in lifetime VC/angel funding raised. To remove the GPL license requirements (dual-license) and/or use the weights commercially over the revenue limit, check out the options provided. Please refer to Marker for more Information about the License of the Model weights

Acknowledgements

This project builds upon the remarkable Marker project created by Vik Paruchuri. We express our gratitude for the inspiration and foundation provided by this project. Special thanks to Surya-OCR and Texify for the OCR models extensively used in this project, and to Crawl4AI for their contributions.

Models being used:

Thank you to the authors for their contributions to these models.


Contact

Star History Chart

For any inquiries, please contact us at adithyaskolavi@gmail.com