adymaharana / d2pruning

MIT License
22 stars 4 forks source link

D2 Pruning: Message Passing for Balancing Diversity & Difficulty in Data Pruning

image

Setup

  1. Create a virtual environment and activate it.
    python3 -m venv env
    source env/bin/activate
  2. Install dependencies for all datasets except DataComp
    python -m pip install -r requirements.txt -f https://download.pytorch.org/whl/cu113/torch_stable.html

    For DataComp, see requirements of the DataComp codebase and additionally install faiss.

Training ResNet18 models on CIFAR10, CIFAR100

The following commands are usage examples. See our paper for the hyperparameters of each dataset.

# Train model on full dataset to extract training dynamics
python train.py --dataset cifar10 --gpuid 0 --epochs 200 --lr 0.1 --network resnet18 --batch-size 256 --task-name all-data --base-dir ./data-model/cifar10

# Get importance scores and sample embeddings
python generate_importance_score.py --gpuid 0 --base-dir ./data-model/cifar10 --task-name all-data --feature

# Select samples using D2 pruning and train ResNet 18 on the selected coreset
N_NEIGHBOR=5
GAMMA=0.1
CORESET_RATIO=0.1
python train.py --dataset cifar10 --gpuid 1 --iterations 40000 --task-name class-lb-graph-n=$N_NEIGHBOR-g=$GAMMA-$CORESET_RATIO \
    --base-dir ./data-model/cifar10/class/ --coreset --coreset-mode class --budget-mode uniform --sampling-mode graph \
    --data-score-path ./data-model/cifar10/all-data/data-score-all-data.pickle \
    --feature-path ./data-model/cifar10/all-data/train-features-all-data.npy \
    --coreset-key forgetting --coreset-ratio $CORESET_RATIO --mis-ratio 0.4 --label-balanced \
    --n-neighbor $N_NEIGHBOR --gamma $GAMMA --stratas 25 --graph-mode sum --graph-sampling-mode weighted

Training ResNet models on ImageNet-1K

# Train model on full dataset to extract training dynamics
python train_imagenet.py --epochs 60 --lr 0.1 --scheduler cosine --task-name all-data --base-dir ./data-model/imagenet --data-dir /dir/to/data/imagenet --network resnet34 --batch-size 256 --gpuid 0,1

# Get importance scores and sample embeddings
python generate_importance_score.py --gpuid 0 --base-dir ./data-model/imagenet --task-name all-data --feature

# Select samples using D2 pruning and train ResNet 18 on the selected coreset
N_NEIGHBOR=5
GAMMA=0.1
CORESET_RATIO=0.1
python train_imagenet.py --dataset imagenet --gpuid 1 --iterations 40000 --task-name class-lb-graph-n=$N_NEIGHBOR-g=$GAMMA-$CORESET_RATIO \
    --base-dir ./data-model/imagenet/graph/ --coreset --coreset-mode graph --budget-mode uniform --sampling-mode graph \
    --data-score-path ./data-model/imagenet/all-data/data-score-all-data.pickle \
    --feature-path ./data-model/imagenet/all-data/train-features-all-data.npy \
    --coreset-key accumulated_margin --coreset-ratio $CORESET_RATIO --mis-ratio 0.4 --label-balanced \
    --n-neighbor $N_NEIGHBOR --gamma $GAMMA --stratas 25 --graph-mode sum --graph-sampling-mode weighted

Training RoBERTa models on Adversarial NLI, ImDB-1k [coming soon]

Training CLIP-style model on DataComp

Follow instructions here to first download the DataComp [small] dataset.

# Select samples using D2 pruning from the DataComp dataset
N_NEIGHBOR=1
GAMMA=1.0
FRACTION=0.3
python select_d2_datacomp.py \
    --metadata-dir ./datacomp/metadata/ --out-dir ./datacomp/d2/  \
    --n-neighbors $N_NEIGHBOR --gamma $GAMMA --fraction $FRACTION \
    --feature-type image|text

This script generates a numpy file containing the UIDs of the DataComp subset that can then be used to reshard the DataComp data for training.

Acknowledgements

Thanks to the authors of Coverage-centric Coreset Selection for High Pruning Rates for releasing their code for evaluating CCS and training ResNet models on CIFAR10, CIFAR100, ImageNet-1K. Much of this codebase has been adapted from their code. Also, thanks to the authors of Beyond neural scaling laws: beating power law scaling via data pruning for releasing the protoypicality scores on ImageNet-1K.

Reference

Please cite our paper if you use the $D^2$ pruning method in your works:


@article{maharana2023d2pruning,
  title         = {D2 Pruning: Message Passing for Balancing Diversity & Difficulty in Data Pruning},
  author        = {Adyasha Maharana and Prateek Yadav and Mohit Bansal},
  year          = {2023},
  archivePrefix = {arXiv},
  primaryClass  = {cs.LG},
  eprint        = {2310.07931}
}