affromero / SMILE

SMILE: Semantically-guided Multi-attribute Image and Layout Editing, ICCV Workshops 2021.
https://affromero.github.io/SMILE/
MIT License
35 stars 1 forks source link
deep-fake deep-learning face-manipulation generative-adversarial-network pytorch

SMILE: Semantically-guided Multi-attribute Image and Layout Editing, ICCVW 2021.

Official PyTorch Implementation

[Paper :newspaper:]   [Video :video_camera:]   [Poster :scroll:]   [Slides :pushpin:]

:sparkles: Results

SMILE can manipulate a source image into ab output image reflecting the attribute and style (e.g., eyeglasses, hat, hair, etc.) of a different person. More high-quality videos can be found in this link.

Checkout the project page for additional visualizations.

Overview of the method

:wrench: Download Pretrained Weights

bash download_weights.sh

:zap: Demo

python main.py --GPU=NO_CUDA --FAN --EYEGLASSES --GENDER --EARRINGS --HAT --BANGS --HAIR --TRAIN_MASK --MOD --SPLIT_STYLE --mode=demo --ref_demo Figures/ffhq_teaser --rgb_demo Figures/teaser_input.png --pretrained_model models/pretrained_models/smileSEM

This command should reproduce the teaser figure. Explanation of arguments:

:earth_asia: Citation

If you find this work is useful for your research, please cite our paper:

@InProceedings{Romero_2021_ICCV,
    author    = {Romero, Andres and Van Gool, Luc and Timofte, Radu},
    title     = {SMILE: Semantically-Guided Multi-Attribute Image and Layout Editing},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops},
    month     = {October},
    year      = {2021},
    pages     = {1924-1933}
}