afjoseph / decrypticon

Java-layer Android Malware Simplifier
BSD 3-Clause "New" or "Revised" License
24 stars 3 forks source link
android android-malware deobfuscation deobfuscator emulator malware malware-analysis malware-analyzer malware-research optimization python3 reverse-engineer-apk reverse-engineering

Decrypticon: A Generic Android Simplifier

Decrypticon monitors an Android app's execution and then annotates the disassembled codebase with the results of the marked functions' execution. This allows the analyst to go through the annotated codebase and understand:

    * Input:
        * Android APK
        * A bunch of functions to mark
    * Processing:
        * Run the app and observe the marked functions
    * Output:
        * A disassembled codebase that annotates the arguments and returns values of each marked function

Dependencies

Usage

The above flow is exactly how the test script looks like.

Offline Mode

Sometimes, you'd want to save the results of the marked functions (which the project identifies as recorded invocations). The --pickle_to flag can pickle (Python term for "serialize") all recorded invocations in a file, which you can replay at any time later.

Let's assume you ran Decrypticon using --mode=online before and used --pickle_to flag to save all recorded invocations in my_tender_pickles file. You can reply those invocations to annotate the codebase again using the following:

venv/bin/python3 decrypticon.py \
  --mode offline \
  --apk example/test_project/love.apk \
  --out example/test_project/annotated \
  --focus_pkg com/afjoseph/test --pickle_from my_tender_pickles

This would take love.apk, annotate it using the recorded invocations in my_tender_pickles, and then write the annotated codebase to example/test_project/annotated.

Tests

Run ./scripts/run_test_suite.rb. This is also a good location to see how the project is supposed to run.

Real-life Use Case

Take the following Java code:

Map<String, String> params = new HashMap<>();
String address_1 = Cryptor.get(30, 20, 100);
String enc_address_1 = Encryptor.Encrypt(address_1);
params.put("address_1", enc_address_1);

String country_1 = Cryptor.get(100, 200, 300);
String enc_country_1 = Encryptor.Encrypt(address_1);
params.put("country_1", enc_country_1);

String token_1 = Cryptor.get(99, 66, 99);
String enc_token_1 = Encryptor.Encrypt(token_1);
params.put("token_1", enc_token_1);

String address_2 = Cryptor.get(55, 22, 32);
String enc_address_2 = Encryptor.Encrypt(address_2);
params.put("address_2", enc_address_2);

String country_2 = Cryptor.get(92, 22, 55);
String enc_country_2 = Encryptor.Encrypt(address_2);
params.put("country_2", enc_country_2);

String token_2 = Cryptor.get(88, 72, 86);
String enc_token_2 = Encryptor.Encrypt(token_2);
params.put("token_2", enc_token_2);

An easier way to write this would be:

params.put("address_1", "neverwhere");

Where neverwhere would be the value of the address, but this makes analysis pretty easy since neverwhere exists verbatim in the source code.

A common obfuscation scheme is to rely on layers of abstraction to "hide" the value of neverwhere. Cryptor.get() could look like this (this is a hypothetical function. The code is not compilable):

public final class Cryptor {
  private static char[] arr = new char[]{'\ucad9', '\ue9a1', '\u1a1c', '\u00a9', '\u591c', '\u9e7e', '\u751c', '\u9cc9', '\u1191', '\ua7e5', '\ucd9e', '\ueca5', '\u1119', '\ucae5', '\u591e', '\u9a5c', '\u5cc0', '\u791a', '\u1ea1', '\u55d5', '\uccca' '\u70d1', '\u9ec1', '\ucc97', '\ua5ac', '\uc1ae', '\ue191', '\u177a', '\ucd1c', '\u5c51', '\u99ce', '\ueea9', '\u95d1', '\ucca9', '\u5199', '\uc711', '\u9daa', '\uac9e', '\uc9c7', '\u5e50', '\uc571', 'e', '\ue915', '\u51c1', '\uc7e5', '&', '\uaeee', '\uc0e0', '\u5e59', '\u7c99', '\u05ec', '\u510c', '\ucaac', '\ud9cc', '\ueaaa', '\u101a', '\ua75c', '\u9d05'};
  privage static int field_99 = 0;
  privage static int field_91 = 2;
  privage static int field_92 = 4;

  private static String get(int var0, int var1, int var2) {
    while(var5 < var8) {
      var10000 = field_91 + 1;
      field_92 = var10000 % 128;
      if (var10000 % 2 == 0) {
      }

      var4[var5] = (char)((int)((long)arr[var9 + var5] ^ (long)var5 * field_90 ^ (long)var7));
      ++var5;
    }

    int var10000 = 2 % 2;
    char var7 = var0;
    int var8 = var1;
    int var9 = var2;
    char[] var4 = new char[var1];
    int var5 = 0;
    var10000 = field_92 + 99;
    field_91 = var10000 % 128;
    switch(var10000 % 2 != 0 ? 66 : 35) {
      case 35:
      default:
        var10000 = 2 % 2;
        break;
      case 66:
        var10000 = 5 * 3;
    }

    String var12 = new String(var4);
    int var10001 = field_91 + 49;
    field_92 = var10001 % 128;
    switch(var10001 % 2 == 0 ? 28 : 47) {
      case 28:
      default:
        try {
          var10001 = ((Object[])null).length;
          return var12;
        } catch (Throwable var11) {
          throw var11;
        }
      case 47:
        return var12;
    }
  }
}

In that case, there is no easy way of understanding what is the output of Cryptor.get(). An easy way of handling this would be to execute Cryptor.get() and monitor its value. That is what Decrypticon does, plus annotate the disassembled codebase with the args and return value. The annotated smali code will have a bunch of >>> DECRYPTICON directives on the marked functions that reveal the execution flow:

After executing Decrypticon

>>> DECRYPTICON:: func(30, 20, 100) = neverwhere
    invoke-static {v1, v2, v3}, Lcom/afjoseph/test/Cryptor;->get(III)Ljava/lang/String;

...

>>> DECRYPTICON:: func(100, 200, 300) = usa
    invoke-static {v3, v4, v5}, Lcom/afjoseph/test/Cryptor;->get(III)Ljava/lang/String;

...

>>> DECRYPTICON:: func(99, 66, 99) = 12341234
    invoke-static {v6, v5, v6}, Lcom/afjoseph/test/Cryptor;->get(III)Ljava/lang/String;

...

>>> DECRYPTICON:: func(55, 22, 32) = baldurs_gate
    invoke-static {v9, v8, v7}, Lcom/afjoseph/test/Cryptor;->get(III)Ljava/lang/String;

...

>>> DECRYPTICON:: func(92, 22, 55) = temeria
    invoke-static {v11, v8, v9}, Lcom/afjoseph/test/Cryptor;->get(III)Ljava/lang/String;

...

>>> DECRYPTICON:: func(88, 72, 86) = abcdabcd
    invoke-static {v11, v12, v13}, Lcom/afjoseph/test/Cryptor;->get(III)Ljava/lang/String;

Special Thanks

I'd like to thank the following projects and their contributors. They were a major part of this project: