aflyingcougar / homelab

MIT License
0 stars 0 forks source link

Template for deploying a Talos cluster backed by Flux

Highly opinionated template for deploying a single Talos cluster with Ansible and Terraform backed by Flux and SOPS.

The purpose here is to showcase how you can deploy an entire Kubernetes cluster and show it off to the world using the GitOps tool Flux. When completed, your Git repository will be driving the state of your Kubernetes cluster. In addition with the help of the Ansible, Terraform and Flux SOPS integrations you'll be able to commit Age encrypted secrets to your public repo.

Overview

👋 Introduction

The following components will be installed in your Talos cluster by default. Most are only included to get a minimum viable cluster up and running.

Additional applications include hajimari, error-pages, echo-server, system-upgrade-controller, reloader, and kured

For provisioning the following tools will be used:

📝 Prerequisites

Note: This template has not been tested on cloud providers like AWS EC2, Hetzner, Scaleway etc... Those cloud offerings probably have a better way of provsioning a Kubernetes cluster and it's advisable to use those instead of the Ansible playbooks included here. This repository can still be tweaked for the GitOps/Flux portion if there's a cluster working in one those environments.

First and foremost some experience in debugging/troubleshooting problems and a positive attitude is required ;)

📚 Reading material

💻 Systems

📍 It is recommended to have 3 master nodes for a highly available control plane.

📂 Repository structure

The Git repository contains the following directories under kubernetes and are ordered below by how Flux will apply them.

📁 kubernetes      # Kubernetes cluster defined as code
├─📁 bootstrap     # Flux installation
├─📁 flux          # Main Flux configuration of repository
└─📁 apps          # Apps deployed into the cluster grouped by namespace

🚀 Lets go

Very first step will be to create a new public repository by clicking the big green Use this template button on this page.

Clone your new repo to you local workstation and cd into it.

📍 All of the below commands are run on your local workstation, not on any of your cluster nodes.

🔧 Workstation Tools

📍 Install the most recent version of the CLI tools below. If you are having trouble with future steps, it is very likely you don't have the most recent version of these CLI tools, !especially sops AND yq!.

  1. Install the following CLI tools on your workstation, if you are NOT using Homebrew on MacOS or Linux ignore steps 4 and 5.

  2. This guide heavily relies on go-task as a framework for setting things up. It is advised to learn and understand the commands it is running under the hood.

  3. Install Python 3 and pip3 using your Linux OS package manager, or Homebrew if using MacOS.

    • Ensure pip3 is working on your command line by running pip3 --version
  4. [Homebrew] Install go-task

    brew install go-task/tap/go-task
  5. [Homebrew] Install workstation dependencies

    task init

⚠️ pre-commit

It is advisable to install pre-commit and the pre-commit hooks that come with this repository.

  1. Enable Pre-Commit

    task precommit:init
  2. Update Pre-Commit, though it will occasionally make mistakes, so verify its results.

    task precommit:update

🔐 Setting up Age

📍 Here we will create a Age Private and Public key. Using SOPS with Age allows us to encrypt secrets and use them in Ansible, Terraform and Flux.

  1. Create a Age Private / Public Key

    age-keygen -o age.agekey
  2. Set up the directory for the Age key and move the Age file to it

    mkdir -p ~/.config/sops/age
    mv age.agekey ~/.config/sops/age/keys.txt
  3. Export the SOPS_AGE_KEY_FILE variable in your bashrc, zshrc or config.fish and source it, e.g.

    export SOPS_AGE_KEY_FILE=~/.config/sops/age/keys.txt
    source ~/.bashrc
  4. Fill out the Age public key in the appropriate variable in configuration section below, note the public key should start with age...

☁️ Global Cloudflare API Key

In order to use Terraform and cert-manager with the Cloudflare DNS challenge you will need to create a API key.

  1. Head over to Cloudflare and create a API key by going here.

  2. Under the API Keys section, create a global API Key.

  3. Use the API Key in the appropriate variable in configuration section below.

📍 You may wish to update this later on to a Cloudflare API Token which can be scoped to certain resources. I do not recommend using a Cloudflare API Key, however for the purposes of this template it is easier getting started without having to define which scopes and resources are needed. For more information see the Cloudflare docs on API Keys and Tokens.

📄 Configuration

📍 The .config.env file contains necessary configuration that is needed by Ansible, Terraform and Flux.

  1. Copy the .config.sample.env to .config.env and start filling out all the environment variables.

    All are required unless otherwise noted in the comments.

    cp .config.sample.env .config.env
  2. Once that is done, verify the configuration is correct by running:

    task verify
  3. If you do not encounter any errors run start having the script wire up the templated files and place them where they need to be.

    task configure

⚡ Preparing Talos

📍 Here we will be using talosctl to prepare the nodes for running a Kubernetes cluster. After completion, Task will drop both a talosconfig and kubeconfig in the root project directory for use with interacting with your cluster via talosctl and kubectl.

  1. Ensure your control plane nodes are accessible via TCP port 50000 and 50001, as well as your worker nodes at TCP 50000. This is how Talosctl is able to connect to your remote nodes.

    Talos Network Connectivity

  2. Generate and validate the machine configuration files

    task talos:init
  3. Bootstrap the Talos cluster

    task talos:bootstrap
  4. Verify the nodes are online

    task cluster:nodes
    # NAME            STATUS   ROLES           AGE   VERSION   INTERNAL-IP      EXTERNAL-IP   OS-IMAGE         KERNEL-VERSION   CONTAINER-RUNTIME
    # talos-259-obn   Ready    <none>          15h   v1.31.2   192.168.20.123   <none>        Talos (v1.7.5)   6.6.33-talos     containerd://1.7.18
    # talos-2gz-t33   Ready    control-plane   15h   v1.31.2   192.168.20.121   <none>        Talos (v1.7.5)   6.6.33-talos     containerd://1.7.18
    # talos-4f8-olv   Ready    <none>          15h   v1.31.2   192.168.20.124   <none>        Talos (v1.7.5)   6.6.33-talos     containerd://1.7.18
    # talos-hli-ffh   Ready    control-plane   15h   v1.31.2   192.168.20.122   <none>        Talos (v1.7.5)   6.6.33-talos     containerd://1.7.18
    # talos-vzw-w9g   Ready    control-plane   15h   v1.31.2   192.168.20.120   <none>        Talos (v1.7.5)   6.6.33-talos     containerd://1.7.18

☁️ Configuring Cloudflare DNS with Terraform

📍 Review the Terraform scripts under ./terraform/cloudflare/ and make sure you understand what it's doing (no really review it).

If your domain already has existing DNS records be sure to export those DNS settings before you continue.

  1. Pull in the Terraform deps

    task terraform:cloudflare-init
  2. Review the changes Terraform will make to your Cloudflare domain

    task terraform:cloudflare-plan
  3. Have Terraform apply your Cloudflare settings

    task terraform:cloudflare-apply

If Terraform was ran successfully you can log into Cloudflare and validate the DNS records are present.

The cluster application external-dns will be managing the rest of the DNS records you will need.

🔹 GitOps with Flux

📍 Here we will be installing flux after some quick bootstrap steps.

  1. Verify Flux can be installed

    task cluster:verify
    # ► checking prerequisites
    # ✔ kubectl 1.21.5 >=1.18.0-0
    # ✔ Kubernetes 1.21.5+k3s1 >=1.16.0-0
    # ✔ prerequisites checks passed
  2. Push you changes to git

    📍 Verify all the *.sops.yaml and *.sops.yml files under the ./ansible, ./kubernetes, and ./terraform folders are encrypted with SOPS

    git add -A
    git commit -m "Initial commit :rocket:"
    git push
  3. Install Flux and sync the cluster to the Git repository

    task cluster:install
    # namespace/flux-system configured
    # customresourcedefinition.apiextensions.k8s.io/alerts.notification.toolkit.fluxcd.io created
  4. Verify Flux components are running in the cluster

    task cluster:pods -- -n flux-system
    # NAME                                       READY   STATUS    RESTARTS   AGE
    # helm-controller-5bbd94c75-89sb4            1/1     Running   0          1h
    # kustomize-controller-7b67b6b77d-nqc67      1/1     Running   0          1h
    # notification-controller-7c46575844-k4bvr   1/1     Running   0          1h
    # source-controller-7d6875bcb4-zqw9f         1/1     Running   0          1h

🎤 Verification Steps

Mic check, 1, 2 - In a few moments applications should be lighting up like a Christmas tree 🎄

You are able to run all the commands below with one task

task cluster:resources
  1. View the Flux Git Repositories

    task cluster:gitrepositories
  2. View the Flux kustomizations

    task cluster:kustomizations
  3. View all the Flux Helm Releases

    task cluster:helmreleases
  4. View all the Flux Helm Repositories

    task cluster:helmrepositories
  5. View all the Pods

    task cluster:pods
  6. View all the certificates and certificate requests

    task cluster:certificates
  7. View all the ingresses

    task cluster:ingresses

🏆 Congratulations if all goes smooth you'll have a Kubernetes cluster managed by Flux, your Git repository is driving the state of your cluster.

☢️ If you run into problems, you can run task ansible:nuke to destroy the k3s cluster and start over.

🧠 Now it's time to pause and go get some coffee ☕ because next is describing how DNS is handled.

📣 Post installation

🌱 Environment

direnv will make it so anytime you cd to your repo's directory it export the required environment variables (e.g. KUBECONFIG). To set this up make sure you hook it into your shell and after that is done, run direnv allow while in your repos directory.

🌐 DNS

📍 The external-dns application created in the networking namespace will handle creating public DNS records. By default, echo-server and the flux-webhook are the only public domain exposed on your Cloudflare domain. In order to make additional applications public you must set an ingress annotation (external-dns.alpha.kubernetes.io/target) like done in the HelmRelease for echo-server. You do not need to use Terraform to create additional DNS records unless you need a record outside the purposes of your Kubernetes cluster (e.g. setting up MX records).

k8s_gateway is deployed on the IP choosen for ${BOOTSTRAP_METALLB_K8S_GATEWAY_ADDR}. Inorder to test DNS you can point your clients DNS to the ${BOOTSTRAP_METALLB_K8S_GATEWAY_ADDR} IP address and load https://hajimari.${BOOTSTRAP_CLOUDFLARE_DOMAIN} in your browser.

You can also try debugging with the command dig, e.g. dig @${BOOTSTRAP_METALLB_K8S_GATEWAY_ADDR} hajimari.${BOOTSTRAP_CLOUDFLARE_DOMAIN} and you should get a valid answer containing your ${BOOTSTRAP_METALLB_INGRESS_ADDR} IP address.

If your router (or Pi-Hole, Adguard Home or whatever) supports conditional DNS forwarding (also know as split-horizon DNS) you may have DNS requests for ${SECRET_DOMAIN} only point to the ${BOOTSTRAP_METALLB_K8S_GATEWAY_ADDR} IP address. This will ensure only DNS requests for ${SECRET_DOMAIN} will only get routed to your k8s_gateway service thus providing DNS resolution to your cluster applications/ingresses.

To access services from the outside world port forwarded 80 and 443 in your router to the ${BOOTSTRAP_METALLB_INGRESS_ADDR} IP, in a few moments head over to your browser and you should be able to access https://echo-server.${BOOTSTRAP_CLOUDFLARE_DOMAIN} from a device outside your LAN.

Now if nothing is working, that is expected. This is DNS after all!

🤖 Renovatebot

Renovatebot will scan your repository and offer PRs when it finds dependencies out of date. Common dependencies it will discover and update are Flux, Ansible Galaxy Roles, Terraform Providers, Kubernetes Helm Charts, Kubernetes Container Images, Pre-commit hooks updates, and more!

The base Renovate configuration provided in your repository can be view at .github/renovate.json5. If you notice this only runs on weekends and you can change the schedule to anything you want or simply remove it.

To enable Renovate on your repository, click the 'Configure' button over at their Github app page and choose your repository. Over time Renovate will create PRs for out-of-date dependencies it finds. Any merged PRs that are in the kubernetes directory Flux will deploy.

🪝 Github Webhook

Flux is pull-based by design meaning it will periodically check your git repository for changes, using a webhook you can enable Flux to update your cluster on git push. In order to configure Github to send push events from your repository to the Flux webhook receiver you will need two things:

  1. Webhook URL - Your webhook receiver will be deployed on https://flux-webhook.${BOOTSTRAP_CLOUDFLARE_DOMAIN}/hook/:hookId. In order to find out your hook id you can run the following command:

    kubectl -n flux-system get receiver/github-receiver
    # NAME              AGE    READY   STATUS
    # github-receiver   6h8m   True    Receiver initialized with URL: /hook/12ebd1e363c641dc3c2e430ecf3cee2b3c7a5ac9e1234506f6f5f3ce1230e123

    So if my domain was onedr0p.com the full url would look like this:

    https://flux-webhook.onedr0p.com/hook/12ebd1e363c641dc3c2e430ecf3cee2b3c7a5ac9e1234506f6f5f3ce1230e123
  2. Webhook secret - Your webhook secret can be found by decrypting the secret.sops.yaml using the following command:

    sops -d ./kubernetes/apps/flux-system/addons/webhooks/github/secret.sops.yaml | yq .stringData.token

    Note: Don't forget to update the BOOTSTRAP_FLUX_GITHUB_WEBHOOK_SECRET variable in your .config.env file so it matches the generated secret if applicable

Now that you have the webhook url and secret, it's time to set everything up on the Github repository side. Navigate to the settings of your repository on Github, under "Settings/Webhooks" press the "Add webhook" button. Fill in the webhook url and your secret.

💾 Storage

Rancher's local-path-provisioner is a great start for storage but soon you might find you need more features like replicated block storage, or to connect to a NFS/SMB/iSCSI server. Check out the projects below to read up more on some storage solutions that might work for you.

🔏 Authenticate Flux over SSH

Authenticating Flux to your git repository has a couple benefits like using a private git repository and/or using the Flux Image Automation Controllers.

By default this template only works on a public GitHub repository, it is advised to keep your repository public.

The benefits of a public repository include:

Expand to read guide on adding Flux SSH authentication 1. Generate new SSH key: ```sh ssh-keygen -t ecdsa -b 521 -C "github-deploy-key" -f ./kubernetes/bootstrap/github-deploy.key -q -P "" ``` 2. Paste public key in the deploy keys section of your repository settings 3. Create sops secret in `./kubernetes/bootstrap/github-deploy-key.sops.yaml` with the contents of: ```yaml apiVersion: v1 kind: Secret metadata: name: github-deploy-key namespace: flux-system stringData: # 3a. Contents of github-deploy-key identity: | -----BEGIN OPENSSH PRIVATE KEY----- ... -----END OPENSSH PRIVATE KEY----- # 3b. Output of curl --silent https://api.github.com/meta | jq --raw-output '"github.com "+.ssh_keys[]' known_hosts: | github.com ssh-ed25519 ... github.com ecdsa-sha2-nistp256 ... github.com ssh-rsa ... ``` 4. Encrypt secret: ```sh sops --encrypt --in-place ./kubernetes/bootstrap/github-deploy-key.sops.yaml ``` 5. Apply secret to cluster: ```sh sops --decrypt ./kubernetes/bootstrap/github-deploy-key.sops.yaml | kubectl apply -f - ``` 6. Update `./kubernetes/flux/config/cluster.yaml`: ```yaml apiVersion: source.toolkit.fluxcd.io/v1beta2 kind: GitRepository metadata: name: home-kubernetes namespace: flux-system spec: interval: 10m # 6a: Change this to your user and repo names url: ssh://git@github.com/$user/$repo ref: branch: main secretRef: name: github-deploy-key ``` 7. Commit and push changes 8. Force flux to reconcile your changes ```sh task cluster:reconcile ``` 9. Verify git repository is now using SSH: ```sh task cluster:gitrepositories ``` 10. Optionally set your repository to Private in your repository settings.

💨 Kubernetes Dashboard

Included in your cluster is the Kubernetes Dashboard. Inorder to log into this you will have to get the secret token from the cluster using the command below.

kubectl -n monitoring get secret kubernetes-dashboard -o jsonpath='{.data.token}' | base64 -d

You should be able to access the dashboard at https://kubernetes.${SECRET_DOMAIN}

🐛 Debugging

Below is a general guide on trying to debug an issue with an resource or application. For example, if a workload/resource is not showing up or a pod has started but in a CrashLoopBackOff or Pending state.

  1. Start by checking all Flux Kustomizations and verify they are healthy.
    • flux get ks -A
  2. Then check all the Flux Helm Releases and verify they are healthy.
    • flux get hr -A
  3. Then check the if the pod is present.
    • kubectl -n <namespace> get pods
  4. Then check the logs of the pod if its there.
    • kubectl -n <namespace> logs <pod-name> -f

Note: If a resource exists, running kubectl -n <namespace> describe <resource> <name> might give you insight into what the problem(s) could be.

Resolving problems that you have could take some tweaking of your YAML manifests in order to get things working, other times it could be a external factor like permissions on NFS. If you are unable to figure out your problem see the help section below.

👉 Help

❔ What's next

The world is your cluster, have at it!

🤝 Thanks

Big shout out to all the authors and contributors to the projects that we are using in this repository.

@whazor created this website as a creative way to search Helm Releases across GitHub. You may use it as a means to get ideas on how to configure an applications' Helm values.