π₯³ Welcome! This is a codebase that accompanies the paper ReEvo: Large Language Models as Hyper-Heuristics with Reflective Evolution.
Give ReEvo 5 minutes, and get a state-of-the-art algorithm in return!
We introduce Language Hyper-Heuristics (LHHs), an emerging variant of Hyper-Heuristics (HHs) that leverages LLMs for heuristic generation, featuring minimal manual intervention and open-ended heuristic spaces.
To empower LHHs, we present Reflective Evolution (ReEvo), a generic searching framework that emulates the reflective design approach of human experts while much surpassing human capabilities with its scalable LLM inference, Internet-scale domain knowledge, and powerful evolutionary search.
We can improve the following types of algorithms:
on the following problems:
with both black-box and white-box settings.
./outputs/main/
by default../problems/*/test.ipynb
.You may install the dependencies above via pip install -r requirements.txt
.
Problem-specific dependencies:
tsp_aco(_black_box)
: pytorch, scikit-learncvrp_aco(_black_box)
/ mkp_aco(_black_box)
/ op_aco(_black_box)
/ NCO
: pytorchtsp_gls
: numba==0.58# e.g., for tsp_aco
python main.py \
problem=tsp_aco \ # problem name
init_pop_size=4 \ # initial population size
pop_size=4 \ # population size
max_fe=20 \ # maximum number of heuristic evaluations
timeout=20 # allowed evaluation time for one generation
Check out ./cfg/
for more options.
tsp_aco
, tsp_aco_black_box
, tsp_constructive
, tsp_gls
, tsp_pomo
, tsp_lehd
cvrp_aco
, cvrp_aco_black_box
, cvrp_pomo
, cvrp_lehd
bpp_offline_aco
, bpp_offline_aco_black_box
, bpp_online
mkp_aco
, mkp_aco_black_box
op_aco
, op_aco_black_box
dpp_ga
./cfg/problem/
../problems/
../prompts/
.By default:
f"./problems/YOUR_PROBLEM/gpt.py"
, and will be imported into ./problems/YOUR_PROBLEM/eval.py
(e.g. for TSP_ACO), which is called by reevo._run_code
during ReEvo../problems/YOUR_PROBLEM/eval.py
(e.g. for TSP_ACO) should print out the meta-objective value as the last line of stdout, which is parsed by reevo.evaluate_population
for heuristic evaluation.Use the cli parameter llm_client
to designate an LLM API provider, and llm_client.model
to determine the model to use. For example,
$ export LLAMA_API_KEY=xxxxxxxxxxxxxxxxxxxx
$ python main.py llm_client=llama_api llm_client.model=gemma2-9b
Supported LLM API providers and models include (note that only chat models are supported):
If you encounter any difficulty using our code, please do not hesitate to submit an issue or directly contact us!
We are also on Slack if you have any questions or would like to discuss ReEvo with us. We are open to collaborations and would love to hear from you π
If you find our work helpful (or if you are so kind as to offer us some encouragement), please consider giving us a star, and citing our paper.
@inproceedings{ye2024reevo,
title={ReEvo: Large Language Models as Hyper-Heuristics with Reflective Evolution},
author={Haoran Ye and Jiarui Wang and Zhiguang Cao and Federico Berto and Chuanbo Hua and Haeyeon Kim and Jinkyoo Park and Guojie Song},
booktitle={Advances in Neural Information Processing Systems},
year={2024},
note={\url{https://github.com/ai4co/reevo}}
}
We are very grateful to Yuan Jiang, Yining Ma, Yifan Yang, and AI4CO community for valuable discussions and feedback.
Also, our work is built upon the following projects, among others: