What C# can do for studying Finite Groups, abelians or not, quotient groups, direct products or semi-direct products, homomorphisms, automorphisms group, with minimalistic manipulations for rings, fields, numbers, polynomials factoring, field extensions, algebraics numbers and many more...
Searching semi-direct product $C_7 \rtimes C_3$ in $\textbf{S}_7$
GlobalStopWatch.Restart();
var s7 = new Sn(7);
var a = s7[(1, 2, 3, 4, 5, 6, 7)];
var allC3 = s7.Where(p => (p ^ 3) == s7.Neutral()).ToArray();
var b = allC3.First(p => Group.GenerateElements(s7, a, p).Count() == 21);
GlobalStopWatch.Stop();
Console.WriteLine("|S7|={0}, |{{b in S7 with b^3 = 1}}| = {1}",s7.Count(), allC3.Count());
Console.WriteLine("First Solution |HK| = 21 : h = {0} and k = {1}", a, b);
Console.WriteLine();
var h = Group.Generate("H", s7, a);
var g21 = Group.Generate("G21", s7, a, b);
DisplayGroup.Head(g21);
DisplayGroup.Head(g21.Over(h));
GlobalStopWatch.Show("Group21");
will output
|S7|=5040, |{b in S7 with b^3 = 1}| = 351
First Solution |HK| = 21 : h = [(1 2 3 4 5 6 7)] and k = [(2 3 5)(4 7 6)]
|G21| = 21
Type NonAbelianGroup
BaseGroup S7
|G21/H| = 3
Type AbelianGroup
BaseGroup G21/H
Group |G21| = 21
NormalSubGroup |H| = 7
# Group21 Time:113 ms
Comparing the previous results with the group presented by $\langle (a,\ b) \ | \ a^7=b^3=1,\ a^2=bab^{-1} \rangle$
GlobalStopWatch.Restart();
var wg = new WordGroup("a7, b3, a2 = bab-1");
GlobalStopWatch.Stop();
DisplayGroup.Head(wg);
var n = Group.Generate("<a>", wg, wg["a"]);
DisplayGroup.Head(wg.Over(n));
GlobalStopWatch.Show($"{wg}");
Console.WriteLine();
will produce
|WG[a,b]| = 21
Type NonAbelianGroup
BaseGroup WG[a,b]
|WG[a,b]/<a>| = 3
Type AbelianGroup
BaseGroup WG[a,b]/<a>
Group |WG[a,b]| = 21
NormalSubGroup |<a>| = 7
# WG[a,b] Time:42 ms
Another way for the previous example
GlobalStopWatch.Restart();
var c7 = new Cn(7);
var c3 = new Cn(3);
var g21 = Group.SemiDirectProd(c7, c3);
GlobalStopWatch.Stop();
var n = Group.Generate("N", g21, g21[1, 0]);
DisplayGroup.HeadSdp(g21);
DisplayGroup.Head(g21.Over(n));
GlobalStopWatch.Show("Group21");
will output
|C7 x: C3| = 21
Type NonAbelianGroup
BaseGroup C7 x C3
NormalGroup |C7| = 7
ActionGroup |C3| = 3
Action FaithFull
g=0 y(g) = (0->0, 1->1, 2->2, 3->3, 4->4, 5->5, 6->6)
g=1 y(g) = (0->0, 1->2, 2->4, 3->6, 4->1, 5->3, 6->5)
g=2 y(g) = (0->0, 1->4, 2->1, 3->5, 4->2, 5->6, 6->3)
|(C7 x: C3)/N| = 3
Type AbelianGroup
BaseGroup (C7 x: C3)/N
Group |C7 x: C3| = 21
NormalSubGroup |N| = 7
# Group21 Time:1 ms
Expressing the group $C_7 \rtimes C_3$ in $\textbf{GL}(2,\mathbb{F}_7)$
var gl27 = FG.GL2p(7);
var g21mat = Group.IsomorphicSubgroup(gl27, g21);
DisplayGroup.HeadGenerators(g21mat);
will output
|C7 x: C3| = 21
Type NonAbelianGroup
BaseGroup GL(2,7)
SuperGroup |GL(2,7)| = 2016
Generators of C7 x: C3
gen1 of order 3
[2, 0]
[0, 1]
gen2 of order 7
[1, 1]
[0, 1]
Displaying characters table for the group $C_7 \rtimes C_3$ in $\textbf{S}_7$
FG.CharacterTable(g21).DisplayCells();
will output
|C7 x: C3| = 21
Type NonAbelianGroup
BaseGroup C7 x C3
[Class 1 3a 3b 7a 7b]
[ Size 1 7 7 3 3]
[ ]
[ Ꭓ.1 1 1 1 1 1]
[ Ꭓ.2 1 ξ3 ξ3² 1 1]
[ Ꭓ.3 1 ξ3² ξ3 1 1]
[ Ꭓ.4 3 0 0 -1/2 - 1/2·I√7 -1/2 + 1/2·I√7]
[ Ꭓ.5 3 0 0 -1/2 + 1/2·I√7 -1/2 - 1/2·I√7]
All i, Sum[g](Xi(g)Xi(g^−1)) = |G| : True
All i <> j, Sum[g](Xi(g)Xj(g^−1)) = 0 : True
All g, h in Cl(g), Sum[r](Xr(g)Xr(h^−1)) = |Cl(g)| : True
All g, h not in Cl(g), Sum[r](Xr(g)Xr(h^−1)) = 0 : True
Computing Galois Group of irreductible polynomial $P=X^7-8X^5-2X^4+16X^3+6X^2-6X-2$ from GroupName website
Ring.DisplayPolynomial = MonomDisplay.StarCaret;
var x = FG.QPoly('X');
var P = x.Pow(7) - 8 * x.Pow(5) - 2 * x.Pow(4) + 16 * x.Pow(3) + 6 * x.Pow(2) - 6 * x - 2; // GroupNames website
GaloisApplicationsPart2.GaloisGroupChebotarev(P, details: true);
will output
f = X^7 - 8*X^5 - 2*X^4 + 16*X^3 + 6*X^2 - 6*X - 2
Disc(f) = 1817487424 ~ 2^6 * 73^4
#1 P = 3 shape (7)
#2 P = 5 shape (1, 3, 3)
#3 P = 7 shape (7)
#4 P = 11 shape (1, 3, 3)
#5 P = 13 shape (1, 3, 3)
#6 P = 17 shape (7)
#7 P = 19 shape (1, 3, 3)
#8 P = 23 shape (1, 3, 3)
#9 P = 29 shape (1, 3, 3)
#10 P = 31 shape (1, 3, 3)
actual types
[(7), 3]
[(1, 3, 3), 7]
expected types
[(7), 6]
[(1, 3, 3), 14]
[(1, 1, 1, 1, 1, 1, 1), 1]
Distances
{ Name = F_21(7) = 7:3, order = 21, dist = 0.6666666666666664 }
{ Name = F_42(7) = 7:6, order = 42, dist = 8.8 }
{ Name = L(7) = L(3,2), order = 168, dist = 25.6 }
{ Name = A7, order = 2520, dist = 380 }
{ Name = S7, order = 5040, dist = 538.6666666666666 }
P = X^7 - 8*X^5 - 2*X^4 + 16*X^3 + 6*X^2 - 6*X - 2
Gal(P) = F_21(7) = 7:3
|F_21(7) = 7:3| = 21
Type NonAbelianGroup
BaseGroup S7
SuperGroup |Symm7| = 5040
DisplayGroup.HeadElementsCayleyGraph(g21, gens: [g21["a"], g21["b-1"]]);
will output
Galois Group of polynomial $P = X^5 + X^4 - 4X^3 - 3X^2 + 3X + 1$
Ring.DisplayPolynomial = MonomDisplay.StarCaret;
var x = FG.QPoly('X');
var P = x.Pow(5) + x.Pow(4) - 4 * x.Pow(3) - 3 * x.Pow(2) + 3 * x + 1;
var roots = IntFactorisation.AlgebraicRoots(P, details: true);
var gal = GaloisTheory.GaloisGroup(roots, details: true);
DisplayGroup.AreIsomorphics(gal, FG.Abelian(5));
will output
[...]
f = X^5 + X^4 - 4*X^3 - 3*X^2 + 3*X + 1 with f(y) = 0
Square free norm : Norm(f(X + 2*y)) = x^25 - 5*x^24 - 98*x^23 + 503*x^22 + 3916*x^21 - 20988*x^20 - 82808*x^19 + 476245*x^18 + 1001759*x^17 - 6482223*x^16 - 6888926*x^15 + 55077950*x^14 + 23535811*x^13 - 295014199*x^12 - 8852570*x^11 + 984611573*x^10 - 207998384*x^9 - 1981105500*x^8 + 676565912*x^7 + 2253157335*x^6 - 871099834*x^5 - 1278826318*x^4 + 467945878*x^3 + 268636799*x^2 - 89574789*x + 1746623
= (x^5 - x^4 - 26*x^3 + 47*x^2 + 47*x - 1) * (x^5 - x^4 - 26*x^3 + 25*x^2 + 91*x - 67) * (x^5 - x^4 - 26*x^3 + 25*x^2 + 157*x - 199) * (x^5 - x^4 - 26*x^3 - 19*x^2 + 113*x + 131) * (x^5 - x^4 - 4*x^3 + 3*x^2 + 3*x - 1)
X^5 + X^4 - 4*X^3 - 3*X^2 + 3*X + 1 = (X + y^4 + y^3 - 3*y^2 - 2*y + 1) * (X - y^4 + 4*y^2 - 2) * (X - y^3 + 3*y) * (X - y^2 + 2) * (X - y)
Are equals True
Polynomial P = X^5 + X^4 - 4*X^3 - 3*X^2 + 3*X + 1
Factorization in Q(α)[X] with P(α) = 0
X - α
X - α^2 + 2
X - α^3 + 3*α
X + α^4 + α^3 - 3*α^2 - 2*α + 1
X - α^4 + 4*α^2 - 2
|Gal( Q(α)/Q )| = 5
Type AbelianGroup
BaseGroup S5
Elements
(1)[1] = []
(2)[5] = [(1 2 5 3 4)]
(3)[5] = [(1 3 2 4 5)]
(4)[5] = [(1 4 3 5 2)]
(5)[5] = [(1 5 4 2 3)]
Gal( Q(α)/Q ) IsIsomorphicTo C5 : True
Computing $\bf{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q})=\mathbf{C_2}\times\mathbf{C_2}$
Ring.DisplayPolynomial = MonomDisplay.Caret;
var x = FG.QPoly('X');
var (X, _) = FG.EPolyXc(x.Pow(2) - 2, 'a');
var (minPoly, a0, b0) = IntFactorisation.PrimitiveElt(X.Pow(2) - 3);
var roots = IntFactorisation.AlgebraicRoots(minPoly);
Console.WriteLine("Q(√2, √3) = Q(α)");
var gal = GaloisTheory.GaloisGroup(roots, details: true);
DisplayGroup.AreIsomorphics(gal, FG.Abelian(2, 2));
will output
Q(√2, √3) = Q(α)
Polynomial P = X^4 - 10*X^2 + 1
Factorization in Q(α)[X] with P(α) = 0
X + α
X - α
X + α^3 - 10*α
X - α^3 + 10*α
|Gal( Q(α)/Q )| = 4
Type AbelianGroup
BaseGroup S4
Elements
(1)[1] = []
(2)[2] = [(1 2)(3 4)]
(3)[2] = [(1 3)(2 4)]
(4)[2] = [(1 4)(2 3)]
Gal( Q(α)/Q ) IsIsomorphicTo C2 x C2 : True
With $\alpha^4-2 = 0,\ \bf{Gal}(\mathrm{Q}(\alpha, \mathrm{i})/\mathrm{Q}) = \mathbf{D_4}$
Ring.DisplayPolynomial = MonomDisplay.Caret;
var x = FG.QPoly('X');
var (X, i) = FG.EPolyXc(x.Pow(2) + 1, 'i');
var (minPoly, _, _) = IntFactorisation.PrimitiveElt(X.Pow(4) - 2);
var roots = IntFactorisation.AlgebraicRoots(minPoly);
Console.WriteLine("With α^4-2 = 0, Q(α, i) = Q(β)");
var gal = GaloisTheory.GaloisGroup(roots, primEltChar: 'β', details: true);
DisplayGroup.AreIsomorphics(gal, FG.Dihedral(4));
will output
With α^4-2 = 0, Q(α, i) = Q(β)
Polynomial P = X^8 + 4*X^6 + 2*X^4 + 28*X^2 + 1
Factorization in Q(β)[X] with P(β) = 0
X + β
X - β
X + 5/12*β^7 + 19/12*β^5 + 5/12*β^3 + 139/12*β
X + 5/24*β^7 - 1/24*β^6 + 19/24*β^5 - 5/24*β^4 + 5/24*β^3 - 13/24*β^2 + 127/24*β - 29/24
X + 5/24*β^7 + 1/24*β^6 + 19/24*β^5 + 5/24*β^4 + 5/24*β^3 + 13/24*β^2 + 127/24*β + 29/24
X - 5/24*β^7 - 1/24*β^6 - 19/24*β^5 - 5/24*β^4 - 5/24*β^3 - 13/24*β^2 - 127/24*β - 29/24
X - 5/24*β^7 + 1/24*β^6 - 19/24*β^5 + 5/24*β^4 - 5/24*β^3 + 13/24*β^2 - 127/24*β + 29/24
X - 5/12*β^7 - 19/12*β^5 - 5/12*β^3 - 139/12*β
|Gal( Q(β)/Q )| = 8
Type NonAbelianGroup
BaseGroup S8
Elements
(1)[1] = []
(2)[2] = [(1 2)(3 8)(4 7)(5 6)]
(3)[2] = [(1 3)(2 8)(4 6)(5 7)]
(4)[2] = [(1 4)(2 6)(3 7)(5 8)]
(5)[2] = [(1 5)(2 7)(3 6)(4 8)]
(6)[2] = [(1 8)(2 3)(4 5)(6 7)]
(7)[4] = [(1 6 8 7)(2 4 3 5)]
(8)[4] = [(1 7 8 6)(2 5 3 4)]
Gal( Q(β)/Q ) IsIsomorphicTo D8 : True
ALGÈBRE T1 Daniel Guin, Thomas Hausberger. ALGÈBRE T1 Groupes, corps et théorie de Galois. EDP Sciences. All Chapters.
Algebra (3rd ed.) Saunders MacLane, Garrett Birkhoff. Algebra (3rd ed.). American Mathematical Society. Chapter XII.2 Groups extensions.
A Course on Finite Groups H.E. Rose. A Course on Finite Groups. Springer. 2009. All Chapters. Web Sections, Web Chapters.
A Course on Finite Groups H.E. Rose. A Course on Finite Groups. Web Sections, Web Chapters and Solution Appendix. Springer. 2009. Chapter 13. Representation and Character Theory.
GroupNames Tim Dokchitser. Group Names. Beta
GAP2022 The GAP Group. GAP -- Groups, Algorithms, and Programming. Version 4.12.0; 2022.
Paper (pdf) Ken Brown. Mathematics 7350. Cornell University. The Todd–Coxeter procedure
Conway polynomials Frank Lübeck. Conway polynomials for finite fields Online data
AECF Alin Bostan, Frédéric Chyzak, Marc Giusti, Romain Lebreton, Grégoire Lecerf, Bruno Salvy, Éric Schost. Algorithmes Efficaces en Calcul Formel. Édition web 1.1, 2018 Chapitre IV Factorisation des polynômes.
hal-01444183 Xavier Caruso Computations with p-adic numbers. Journées Nationales de Calcul Formel, In press, Les cours du CIRM. 2017. Several implementations of p-adic numbers
Algebraic Factoring Barry Trager Algebraic Factoring and Rational Function Integration. Laboratory for Computer Science, MIT. 1976. Norms and Algebraic Factoring
Bases de Gröbner Jean-Charles Faugere Résolution des systèmes polynômiaux en utilisant les bases de Gröbner. INRIA (POLSYS) / UPMC / CNRS/ LIP6. (JNCF) 2015
Ideals, Varieties, and Algorithms David A. Cox, John Little, Donal O’Shea Ideals, Varieties, and Algorithms. Springer. 4th Edition. 2015. Chapter 5. Polynomial and Rational Functions on a Variety
Charaktertheorie Jun.-Prof. Dr. Caroline Lassueur Character Theory of Finite Groups. TU Kaiserslautern, SS2020. Chapter 6. Induction and Restriction of Characters
Wikipedia Wikipedia. The Free Encyclopedia. Many algorithms and proofs
WolframCloud Wolfram Research. WOLFRAM CLOUD Integrated Access to Computational Intelligence 2023 Wolfram Research, Inc.
Pari/GP The PARI Group. PARI/GP Number Theory-oriented Computer Algebra System. Bordeaux. Version 2.15.x; 2020-2022.
milneFT Milne, James S. Fields and Galois Theory. Ed web v5.10, 2022. Chapter 4. Computing Galois Groups.
ChatGPT OpenAI. ChatGPT August 3, 2023 Version3.5 Free Research Preview.
fplll The FPLLL development team. A lattice reduction library may2021 Version 5.4.1
arb F.Johansson Arb a C library for arbitrary-precision ball arithmetic june2022 Version 2.23
milneCFT Milne, James S. Class Field Theory. Ed web v4.03, 2020. Chapter 2. The Cohomology of Groups.
Cohomology of Finite Groups Alejandro Adem, R. James Milgram. Cohomology of Finite Groups Springer. Second Edition 2004. Chapter 1. Group Extensions, Simple Algebras and Cohomology
arXiv:math/0010134 Florentin Smarandache, PhD Associate Professor Chair of Department of Math & Sciences INTEGER ALGORITHMS TO SOLVE DIOPHANTINE LINEAR EQUATIONS AND SYSTEMS. University of New Mexico nov 2007.
RSW1999 Iain Raeburn, Aidan Sims, and Dana P.Williams TWISTED ACTIONS AND OBSTRUCTIONS IN GROUP COHOMOLOGY. Germany, March 8–12, 1999.
A000001 OEIS. The On-Line Encyclopedia of Integer Sequences. A000001 Number of groups of order n.
relators John J. CANNON. Construction of defining relators for finite groups. Department of Pure Mathematics, University of Sydney. Discrete Mathematics 5 (1973), North-Holland Publishing Company. Construction of defining relators for finite groups. p105-129
generatorsGLnq D.E.Taylor. Pairs of Generators for Matrix Groups. Department of Pure Mathematics The University of Sydney Australia 2006. arXiv:2201.09155v1
Groups and Symmetries From Finite Groups to Lie Groups Yvette Kosmann-Schwarzbach, Stephanie Frank Singer Groups and Symmetries From Finite Groups to Lie Groups. Springer. 2th Edition. 2022. Chapter 2. Representations of Finite Groups
Algorithms in Invariant Theory Bernd Sturmfels. Algorithms in Invariant Theory Second edition. 2008 Springer-Verlag/Wien. Chapter2 Invariant theory of finite groups.
ntbv2 Victor Shoup. A Computational Introduction to Number Theory and Algebra. Second edition. December 2008 Cambridge University Press. New York University Chapter20 Algorithms for finite fields.
pslqm2 David H. Bailey. The two-level multipair PSLQ algorithm. May 2, 2024 PSLQM2.
SymPy Meurer A, Smith CP, Paprocki M, Čertík O, Kirpichev SB, Rocklin M, Kumar A,Ivanov S, Moore JK, Singh S, Rathnayake T, Vig S, Granger BE, Muller RP,Bonazzi F, Gupta H, Vats S, Johansson F, Pedregosa F,Curry MJ, Terrel AR,Roučka Š, Saboo A, Fernando I, Kulal S, Cimrman R, Scopatz A. (2017) SymPy:symbolic computing in Python. PeerJ Computer Science 3:e103 Version 1.12; 2023.
LMFDB The LMFDB Collaboration. The L-functions and modular forms database. 2024.