aifoundry-org / MHAQ

Customizable and automated environment for quantization algorithms.
Apache License 2.0
0 stars 0 forks source link

MHAQ: Moderately Hackable Quantization framework

Introduction

This repository provides a customizable and automated environment for developing and testing different quantization methods.

Features

Installation

Instructions to setup framework:

  1. Clone this repo with

    git clone https://github.com/aifoundry-org/Quant.git
  2. Install project dependencies (it is better to use wit virtual environment)

    pip3 install -r requirements.txt

Getting started with QAT

1. Define pipeline with config

Config schema placed in src/config/config_schema.py

from src.config.config_loader import load_and_validate_config

config = load_and_validate_config("config/{PATH_TO_YOUR_CONFIG}")

2. Initialize model to quantize

from src.models.compose.composer import ModelComposer

composer = ModelComposer(config=config)

model = composer.compose()

3. Initialize trainer

from src.training.trainer import Trainer

trainer = Trainer(config=config)

4. Initialize quantizer

from src.quantization.quantizer import Quantizer

quantizer = Quantizer(config=config)()

5. Define your data

from src.data import YOURDATAMODULE

data = YOURDATAMODULE

6. Quantize and train

qmodel = quantizer.quantize(model, in_place=True)

trainer.fit(qmodel, datamodule=data)

Getting started with PTQ

Not yet implemented.

Customization and Hackability

Please refer to CONTRIBUTING.md

Performance Metrics

Model Dataset Method QW QA Best Top-1
Resnet-20 CIFAR-10 FP - - 91.7%
Resnet-20 CIFAR-10 RNIQ 2 - 91.72%
Resnet-20 CIFAR-10 link 2 - 91.1%