This is a PyTorch Implementation of https://github.com/610265158/face_landmark which is built with Tensorflow. Thanks very much for his pioneer contribution and impressing results. Also respect towards PFLD https://arxiv.org/pdf/1902.10859.pdf.
Here is a Demo with 23M file size :D. 女神迪丽热巴。
Other Chinese famous actors:
这个库是610265158的face_landmark库的PyTorch实现,用户名是他的QQ号,赶紧去面基。
The training and inference strategies are just copy of 610265158. WingLoss, Multi-layer feature concatenation, Headpose/Face classification assisted training are all used. The differences with 610265158 are:
训练和推理处理基本是抄上面那个人的。该用的策略都用了。不同点主要是用更轻量的Slim网络和用300W-LP训练模型。Slim网络的结构特别适合通过MNN在移动端上使用。光流跟踪主要是提升视觉稳定性。另外,工程提供了一个简易的人脸检测器来Demo效果,直接把 https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB 这个库里的模型包装了一下就拿来用了。你们可以换成自己的。
其它版本应该都问题不大,如果有问题,自行翻墙解决。
Modify data_dir variable in make_json.py, and run it. It will generate train.json and val.json. The data_dir should be organized as:
├── 300VW
│ ├── 001_annot
│ ├── 002_annot
│ ....
├── 300W
│ ├── 01_Indoor
│ └── 02_Outdoor
├── AFW
│ └── afw
├── HELEN
│ ├── testset
│ └── trainset
├── IBUG
│ └── ibug
├── LFPW
│ ├── testset
│ └── trainset
Yes, the code above is also copied from 610265158.
Then run python train.py
.
In my experience, the training is extremely slow, especially with the exploding balanced training sets. You can run recon_dataset.py
before run python train.py
to accelerate the training by reduce the size of the images.
这个recon_dataset.py
的原理就是把图片裁一下,这样训练的时候读数据的时候能快一些。
I trained with about 4 hours per epoch on my RTX2060. Sad...
Run demo.py
. Change the code as you need.
谁如果训练出了效果更好的模型请分享一下,还有其它问题的话我们Issue见。