News
Our GNN acceleration library for PyTorch is now available. https://github.com/alibaba/graphlearn-for-pytorch
简体中文 | English
Graph-Learn (formerly AliGraph) is a distributed framework designed for the development and application of large-scale graph neural networks. It has been successfully applied to many scenarios within Alibaba, such as search recommendation, network security, and knowledge graph. After Graph-Learn 1.0, we added online inference services to the Graph-Learn framework, providing a complete solution including training and inference for GNNs to be used in real business.
GraphLearn-Training
The training framework, supports sampling on batch graphs, training offline or incremental GNN models.
It provides both Python and C++ interfaces for graph sampling operations and provides a gremlin-like GSL (Graph Sampling Language) interface. For GNN models, Graph-Learn provides a set of paradigms and processes for model development. It is compatible with both TensorFlow and PyTorch, and provides data layer, model layer interfaces and rich model examples.
Dynamic-Graph-Service
An online inference service, supports real-time sampling on dynamic graphs with streaming graph updates.
It provides a performance guarantee of sampling P99 latency in 20ms on large-scale dynamic graphs. The Client side of the Online Inference Service provides Java GSL interfaces and Tensorflow Model Predict.
Use GraphLearn-Training and Dynamic-Graph-Service for training and inference.
Please cite the following paper in your publications if Graph-Learn helps your research.
@article{zhu2019aligraph,
title={AliGraph: a comprehensive graph neural network platform},
author={Zhu, Rong and Zhao, Kun and Yang, Hongxia and Lin, Wei and Zhou, Chang and Ai, Baole and Li, Yong and Zhou, Jingren},
journal={Proceedings of the VLDB Endowment},
volume={12},
number={12},
pages={2094--2105},
year={2019},
publisher={VLDB Endowment}
}
Apache License 2.0.