It manages these modules with the help of ModelScope Registry and Configuration mechanism.
The Searcher
is defined to be responsible for building and completing the entire search process. Through the combination of these modules and the corresponding configuration files, we can complete backbone search for different tasks (such as classification, detection, etc.) under different budget constraints (such as the number of parameters, FLOPs, delay, etc.).
Currently supported tasks: For each task, we provide several sample configurations and scripts as follows to help you get started quickly.
Classification
:Please Refer to Search Space and ConfigDetection
:Please Refer to Search Space and ConfigQuantization
: Please Refer to Search Space and ConfigBackbone | Param (MB) | FLOPs (G) | ImageNet TOP1 | Structure | Download |
---|---|---|---|---|---|
DeepMAD-R18 | 11.69 | 1.82 | 77.7% | txt | model |
DeepMAD-R34 | 21.80 | 3.68 | 79.7% | txt | model |
DeepMAD-R50 | 25.55 | 4.13 | 80.6% | txt | model |
DeepMAD-29M-224 | 29 | 4.5 | 82.5% | txt | model |
DeepMAD-29M-288 | 29 | 4.5 | 82.8% | txt | model |
DeepMAD-50M | 50 | 8.7 | 83.9% | txt | model |
DeepMAD-89M | 89 | 15.4 | 84.0% | txt | model |
Zen-NAS-R18-like | 10.8 | 1.7 | 78.44 | txt | model |
Zen-NAS-R50-like | 21.3 | 3.6 | 80.04 | txt | model |
Zen-NAS-R152-like | 53.5 | 10.5 | 81.59 | txt | model |
The official code for Zen-NAS was originally released at https://github.com/idstcv/ZenNAS.
Backbone | Param (MB) | BitOps (G) | ImageNet TOP1 | Structure | Download |
---|---|---|---|---|---|
MBV2-8bit | 3.4 | 19.2 | 71.90% | - | - |
MBV2-4bit | 2.3 | 7 | 68.90% | - | - |
Mixed19d2G | 3.2 | 18.8 | 74.80% | txt | model |
Mixed7d0G | 2.2 | 6.9 | 70.80% | txt | model |
Backbone | Param (M) | FLOPs (G) | box APval | box APS | box APM | box APL | Structure | Download |
---|---|---|---|---|---|---|---|---|
ResNet-50 | 23.5 | 83.6 | 44.7 | 29.1 | 48.1 | 56.6 | - | - |
ResNet-101 | 42.4 | 159.5 | 46.3 | 29.9 | 50.1 | 58.7 | - | - |
MAE-DET-S | 21.2 | 48.7 | 45.1 | 27.9 | 49.1 | 58.0 | txt | model |
MAE-DET-M | 25.8 | 89.9 | 46.9 | 30.1 | 50.9 | 59.9 | txt | model |
MAE-DET-L | 43.9 | 152.9 | 47.8 | 30.3 | 51.9 | 61.1 | txt | model |
Backbone | size | FLOPs (G) | SSV1 Top-1 | SSV1 Top-5 | Structure |
---|---|---|---|---|---|
X3D-S | 160 | 1.9 | 44.6 | 74.4 | - |
X3D-S | 224 | 1.9 | 47.3 | 76.6 | - |
E3D-S | 160 | 1.9 | 47.1 | 75.6 | txt |
E3D-M | 224 | 4.7 | 49.4 | 78.1 | txt |
E3D-L | 312 | 18.3 | 51.1 | 78.7 | txt |
Note: If you find this useful, please support us by citing them.
@inproceedings{cvpr2023deepmad,
title = {DeepMAD: Mathematical Architecture Design for Deep Convolutional Neural Network},
author = {Xuan Shen and Yaohua Wang and Ming Lin and Yilun Huang and Hao Tang and Xiuyu Sun and Yanzhi Wang},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2023},
url = {https://arxiv.org/abs/2303.02165}
}
@inproceedings{icml23prenas,
title={PreNAS: Preferred One-Shot Learning Towards Efficient Neural Architecture Search},
author={Haibin Wang and Ce Ge and Hesen Chen and Xiuyu Sun},
booktitle={International Conference on Machine Learning},
year={2023},
organization={PMLR}
}
@inproceedings{iclr23maxste,
title = {Maximizing Spatio-Temporal Entropy of Deep 3D CNNs for Efficient Video Recognition},
author = {Junyan Wang and Zhenhong Sun and Yichen Qian and Dong Gong and Xiuyu Sun and Ming Lin and Maurice Pagnucco and Yang Song },
journal = {International Conference on Learning Representations},
year = {2023},
}
@inproceedings{neurips23qescore,
title = {Entropy-Driven Mixed-Precision Quantization for Deep Network Design},
author = {Zhenhong Sun and Ce Ge and Junyan Wang and Ming Lin and Hesen Chen and Hao Li and Xiuyu Sun},
journal = {Advances in Neural Information Processing Systems},
year = {2022},
}
@inproceedings{icml22maedet,
title={MAE-DET: Revisiting Maximum Entropy Principle in Zero-Shot NAS for Efficient Object Detection},
author={Zhenhong Sun and Ming Lin and Xiuyu Sun and Zhiyu Tan and Hao Li and Rong Jin},
booktitle={International Conference on Machine Learning},
year={2022},
organization={PMLR}
}
@inproceedings{iccv21zennas,
title = {Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition},
author = {Ming Lin and Pichao Wang and Zhenhong Sun and Hesen Chen and Xiuyu Sun and Qi Qian and Hao Li and Rong Jin},
booktitle = {2021 IEEE/CVF International Conference on Computer Vision},
year = {2021},
}
This project is developed by Alibaba and licensed under the Apache 2.0 license.
This product contains third-party components under other open source licenses.
See the NOTICE file for more information.