Note: This dataset is now part of the MSLR2022 Shared Task. We encourage you to use the data as modified for the task: available here. There is also a leaderboard for this task, available here.
MS^2 is a dataset containing medical systematic reviews, their constituent studies, and a large amount of related markup. This repository contains code for attempting to produce summaries from this data. To find out more about how we created this dataset, please read our preprint.
This dataset is created as an annotated subset of the Semantic Scholar research corpus. MS^2 is licensed under the following license agreement: Semantic Scholar API and Dataset License Agreement
All following commands are assumed to be run in the same terminal session, so variables such as PYTHONPATH
are assumed to be carried between components.
You might wish to create a conda env:
conda create -n ms2 python=3.8
# or conda create -p ms2 python=3.8
conda activate ms2
You will need to install these packages:
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt
wget https://ai2-s2-research.s3-us-west-2.amazonaws.com/longformer/longformer-encdec-base-16384.tar.gz
wget https://ai2-s2-research.s3-us-west-2.amazonaws.com/longformer/longformer-encdec-large-16384.tar.gz
We encourage you to use the cleaned up data files provided here
The original data and model files associated with the paper are linked below.
File | Description | sha1 | md5 |
---|---|---|---|
ms_data_2021-04-12.zip | MS^2 Dataset Files | 6090fbea | 7cf243af |
bart_base_ckpt_7.ckpt | BART checkpoint | 9698478c | 4a0d5630 |
longformer_base_ckpt_7.ckpt | Longformer (LED) checkpoint | 327f9f41 | 4558b0d4 |
evidence_inference_models.zip | EI models | bc7fecdc | 2bc1bdaf |
decoded.zip | a9e023e2 | 0725f2a4 | |
decoded_with_scores.zip | 38715772 | 5808924e |
All files are on AWS S3, so you can also acquire them using the AWS cli, e.g. aws s3 cp s3://ai2-s2-ms2/ms_data_2021-04-12.zip $LOCALDIR/ms2_data/
The first step is to convert model inputs for the summarizer. This converts the review structure into tensorized versions of inputs and outputs; either text or table inputs or outputs. The primary versions of interest are the text-to-text version and the table-to-table versions. See sample.json for an example of the raw inputs.
This will need to be repeated for each subset:
input_subset=...
output_reviews_file=...
MAX_LENGTH="--max_length 500"
# Run from either the ms2 root or specify the path of the ms2 repository.
export PYTHONPATH=./
# text-text version
python scripts/modeling/summarizer_input_prep.py --input $input_subset --output $output_reviews_file --tokenizer facebook/bart-base $MAX_LENGTH
# table-table version
python scripts/modeling/tabular_summarizer_input_prep.py --input $input_subset --output $output_reviews_file --tokenizer facebook/bart-base $MAX_LENGTH
# text-table version
python scripts/modeling/text_to_table_input_prep.py --input $input_subset --output $output_reviews_file --tokenizer facebook/bart-base $MAX_LENGTH
# table-text version
python scripts/modeling/table_to_text_summarizer_input.py --input $input_subset --output $output_reviews_file --tokenizer facebook/bart-base $MAX_LENGTH
All model training uses the same script. Run with --help
for all options. This requires at least one RTX8000 (users of just one will need to adjust GRAD_ACCUM appropriately).
training_reviews_file="result of input prep"
validation_reviews_file="result of input prep"
training_root="place to store model artifacts"
EPOCHS=8 # more doesn't seem to do much
GRAD_ACCUM=16 # if using 2x RTX8000, otherwise set for batch sizes of 32
MODEL_NAME= # options are facebook/bart-base, facebook/bart-large, /path/to/longformer/base, /path/to/longformer/large
python ms2/models/transformer_summarizer.py \
--train $training_reviews_file \
--val $validation_reviews_file \
--training_root $training_dir \
--epochs=$EPOCHS \
--grad_accum=$GRAD_ACCUM \
--fp16 \
--model_name $MODEL_NAME
Make predictions via:
INPUT=$validation_reviews_file
OUTPUT="well, you want this to go somewhere?"
CHECKPOINT="trained model"
NUM_BEAMS=6
MODEL_NAME="same as in modeling"
python scripts/modeling/decode.py --input $INPUT --output $OUTPUT --checkpoint $CHECKPOINT --num_beams=$NUM_BEAMS --model_name $MODEL_NAME
The tabular target settings should have the extra arguments: --min_length 2 --max_length 10
For tabular scoring:
f="$OUTPUT from above"
python scripts/modeling/f1_scorer.py --input $f --output $f.scores
For textual scoring (requires a GPU):
f="$OUTPUT from above"
evidence_inference_dir=...
evidence_inference_classifier_params=...
python scripts/modeling/consistency_scorer.py --model_outputs $f --output $f.scores --evidence_inference_dir $evidence_inference_dir --evidence_inference_classifier_params $evidence_inference_params &
This section uses a modified version of the evidence inference dataset that discards the comparator. Clone evidence inference fom the ms2 tag. Once installing the requirements.txt file, the models may be trained via:
python evidence_inference/models/pipeline.py --params params/sampling_abstracts/bert_pipeline_8samples.json --output_dir $evidence_inference_dir
If using this dataset, please cite:
@inproceedings{deyoung-etal-2021-ms,
title = "{MS}{\^{}}2: Multi-Document Summarization of Medical Studies",
author = "DeYoung, Jay and
Beltagy, Iz and
van Zuylen, Madeleine and
Kuehl, Bailey and
Wang, Lucy Lu",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.594",
pages = "7494--7513"
}