aluo-x / 3D_SLN

Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)
Apache License 2.0
52 stars 7 forks source link
differentiable-rendering graph-neural-networks scene-generation scene-graph scene-layout scene-refinement

End-to-End Optimization of Scene Layout

Teaser Image Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral)

Project site, Bibtex

For help contact afluo [a.t] andrew.cmu.edu or open an issue

Download checkpoints here, download metadata here

Project structure
|-3d_SLN
  |-data
    |-suncg_dataset.py
      # Actual definition for the dataset object, makes batches of scene graphs
  |-metadata
    # SUNCG meta data goes here
    |-30_size_info_many.json
      # data about object size/volume, for 30/70 cutoff
    |-data_rot_train.json
      # Normalized object positions & rotations for training
    |-data_rot_val.json
      # For testing
    |-size_info_many.json
      # data about object size/volume, different cutoff
    |-valid_types.json
      # What object types we should use for making the scene graph
      # Caution when editing this, quite a bit is hard coded elsewhere
  |-models
    |-diff_render.py
      # Uses the Neural Mesh Renderer (Pytorch Version) to refine object positions
    |-graph.py
      # Graph network building blocks
    |-misc.py
      # Misc helper functions for the diff renderer
    |-Sg2ScVAE_model.py
      # Code to construct the VAE-graph network
    |-SPADE_related.py
      # Tools to construct SPADE VAE GAN (inference only)
  |-options
    # Global options
  |-render
    # Contains various "profiles" for Blender rendering
  |-testing
    # You must call batch_gen in test.py at least once
    # It will call into get_layouts_from_network in test_VAE.py
    # this will compute the posterior mean & std and cache it
    |-test_acc_mean_std.py
      # Contains helper functions to measure acc/l1/std 
    |-test_heatmap.py
      # Contains the functions *produce_heatmap* and *plot_heatmap*
      # The first function takes as input a verbally defined scene graph
        # If not provided, it uses a default scene graph with 5 objects
        # It will load weights for a VAE-graph network
        # Then load the computed posterior mean & std
        # And repeatedly sample from the given scene graph
        # Saves the results to a .pkl file
      # The second function will load a .pkl and plot them as heatmaps
    |-test_plot2d.py
      # Contains a function that uses matplotlib
      # Does NOT require SUNCG
      # Plots the objects using colors provided by ScanNet
    |-test_plot3d.py
      # Calls into the blender code in the ../render folder
      # Requires the SUNCG meshes
      # Requires Blender 2.79
      # Either uses the CPU (Blender renderer)
      # Or uses the GPU (Cycles renderer)
      # Loads a HDR texture (from HDRI Haven) for background
    |-test_SPADE_shade.py
      # Loads semantic maps & depth map, and produces RGB images using SPADE
    |-test_utils.py
      # Contains helper functions for testing
        # Of interest is the *get_sg_from_words* function
    |-test_VAE.py
  |-build_dataset_model.py
     # Constructs dataset & dataloader objects
     # Also constructs the VAE-graph network
  |-test.py
     # Provides functions which performs the following:
       # generation of layouts from scene graphs under the *batch_gen* argument
       # measure the accuracy of l1 loss, accuracy, std under the *measure_acc_l1_std* argument
       # draw the topdown heatmaps of layouts with a single scene graph under the *heat_map* argument
       # plot the topdown boxes of layouts with under the *draw_2d* argument
       # plot the viewer centric layouts using suncg meshes under the *draw_3d* argument
       # perform SPADE based shading of semantic+depth maps under the *gan_shade* argument
  |-train.py
     # Contains the training loop for the VAE-graph network
  |-utils.py
     # Contains various helper functions for:
       # managing network losses
       # make scene graphs from bounding boxes
       # load/write jsons
       # misc other stuff

Citation

If you find this repo useful for your research, please consider citing the paper

@inproceedings{luo2020end,
  title={End-to-End Optimization of Scene Layout},
  author={Luo, Andrew and Zhang, Zhoutong and Wu, Jiajun and Tenenbaum, Joshua B},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={3754--3763},
  year={2020}
}