Polyssifier runs a multitude of machine learning models on data. It reports scores, confusion matrices, predictions, and plots the scores ranked by classifier performance.
pip install polyssifier
from polyssifier import poly
# Load data
data = np.load("/path/to/data.npy")
label = np.load("/path/to/labels.npy")
# Run analysis
report = poly(data,label, n_folds=8)
# Plot results
report.plot_scores()
report.plot_features(ntop=10)
from polyssifier import polyr
# Load data
data = np.load("/path/to/data.npy")
target = np.load("/path/to/target.npy")
# Run analysis
report = polyr(data, target, n_folds=8)
# Plot results
report.plot_scores()
report.plot_features(ntop=10)
poly data.npy label.npy --concurrency 10
Example: on sample/example.ipynb
It includes the following classifiers:
and the following regressors:
You can exclude some of this models by providing a list of names as follows:
from polyssifier import poly
report = poly(data,label, n_folds=8,
exclude=['Multilayer Perceptron'])