alvarouc / polyssifier

run a multitude of classifiers on you data and get an AUC report
GNU General Public License v2.0
68 stars 23 forks source link
auc classifier mlp regression

Coverage Status example workflow

Polyssifier

Polyssifier runs a multitude of machine learning models on data. It reports scores, confusion matrices, predictions, and plots the scores ranked by classifier performance.

Installation

pip install polyssifier

How to use

For classification

from polyssifier import poly
# Load data
data = np.load("/path/to/data.npy")
label = np.load("/path/to/labels.npy")
# Run analysis
report = poly(data,label, n_folds=8)
# Plot results
report.plot_scores()
report.plot_features(ntop=10)

For Regression

from polyssifier import polyr
# Load data
data = np.load("/path/to/data.npy")
target = np.load("/path/to/target.npy")
# Run analysis
report = polyr(data, target, n_folds=8)
# Plot results
report.plot_scores()
report.plot_features(ntop=10)

In the terminal

poly data.npy label.npy --concurrency 10

Requirements

Features

Example: on sample/example.ipynb

It includes the following classifiers:

and the following regressors:

You can exclude some of this models by providing a list of names as follows:

from polyssifier import poly

report = poly(data,label, n_folds=8,
              exclude=['Multilayer Perceptron'])