amazon-science / long-short-term-transformer

[NeurIPS 2021 Spotlight] Official implementation of Long Short-Term Transformer for Online Action Detection
Apache License 2.0
127 stars 19 forks source link
online-action-detection video-analysis video-transformer

Long Short-Term Transformer for Online Action Detection

Introduction

This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

network

Environment

Data Preparation

Option1: Prepare the features and targets by yourself.

  1. Download the THUMOS'14 and TVSeries datasets.

  2. Extract feature representations for video frames.

    • For ActivityNet pretrained features, we use the ResNet-50 model for the RGB and optical flow inputs. We recommend to use this checkpoint in MMAction2.

    • For Kinetics pretrained features, we use the ResNet-50 model for the RGB inputs. We recommend to use this checkpoint in MMAction2. We use the BN-Inception model for the optical flow inputs. We recommend to use the model here.

    Note: We compute the optical flow using DenseFlow.

  3. If you want to use our dataloaders, please make sure to put the files as the following structure:

    • THUMOS'14 dataset:

      $YOUR_PATH_TO_THUMOS_DATASET
      ├── rgb_kinetics_resnet50/
      |   ├── video_validation_0000051.npy (of size L x 2048)
      │   ├── ...
      ├── flow_kinetics_bninception/
      |   ├── video_validation_0000051.npy (of size L x 1024)
      |   ├── ...
      ├── target_perframe/
      |   ├── video_validation_0000051.npy (of size L x 22)
      |   ├── ...
    • TVSeries dataset:

      $YOUR_PATH_TO_TVSERIES_DATASET
      ├── rgb_kinetics_resnet50/
      |   ├── Breaking_Bad_ep1.npy (of size L x 2048)
      │   ├── ...
      ├── flow_kinetics_bninception/
      |   ├── Breaking_Bad_ep1.npy (of size L x 1024)
      |   ├── ...
      ├── target_perframe/
      |   ├── Breaking_Bad_ep1.npy (of size L x 31)
      |   ├── ...
  4. Create softlinks of datasets:

    cd long-short-term-transformer
    ln -s $YOUR_PATH_TO_THUMOS_DATASET data/THUMOS
    ln -s $YOUR_PATH_TO_TVSERIES_DATASET data/TVSeries

Option2: Directly download the pre-extracted features and targets from TeSTra.

If you want to skip the data preprocessing and quickly try LSTR, please refer to TeSTra. The features and targets there exactly follow LSTR's data structure and should be able to reproduce LSTR's performance. However, if you have any question about the processing of these features and targets, please contact the authors of TeSTra directly.

Training

Training LSTR with 512 seconds long-term memory and 8 seconds short-term memory requires less 3 GB GPU memory.

The commands are as follows.

cd long-short-term-transformer
# Training from scratch
python tools/train_net.py --config_file $PATH_TO_CONFIG_FILE --gpu $CUDA_VISIBLE_DEVICES
# Finetuning from a pretrained model
python tools/train_net.py --config_file $PATH_TO_CONFIG_FILE --gpu $CUDA_VISIBLE_DEVICES \
    MODEL.CHECKPOINT $PATH_TO_CHECKPOINT

Online Inference

There are three kinds of evaluation methods in our code.

Evaluation

Evaluate LSTR's performance for online action detection using perframe mAP or mcAP.

cd long-short-term-transformer
python tools/eval/eval_perframe --pred_scores_file $PRED_SCORES_FILE

Evaluate LSTR's performance at different action stages by evaluating each decile (ten-percent interval) of the video frames separately.

cd long-short-term-transformer
python tools/eval/eval_perstage --pred_scores_file $PRED_SCORES_FILE

Citations

If you are using the data/code/model provided here in a publication, please cite our paper:

@inproceedings{xu2021long,
    title={Long Short-Term Transformer for Online Action Detection},
    author={Xu, Mingze and Xiong, Yuanjun and Chen, Hao and Li, Xinyu and Xia, Wei and Tu, Zhuowen and Soatto, Stefano},
    booktitle={Conference on Neural Information Processing Systems (NeurIPS)},
    year={2021}
}

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.