This is a very basic/naive implementation in Java of the Chroma Vector Database API.
This client works with Chroma Versions 0.4.3+
Add Maven dependency:
<dependency>
<groupId>io.github.amikos-tech</groupId>
<artifactId>chromadb-java-client</artifactId>
<version>0.1.7</version>
</dependency>
Ensure you have a running instance of Chroma running. We recommend one of the two following options:
Docker
, minikube
and kubectl
installed)Since version 0.1.6
the library also offers a built-in default embedding function which does not rely on any external
API to generate embeddings and works in the same way it works in core Chroma Python package.
package tech.amikos;
import tech.amikos.chromadb.*;
import tech.amikos.chromadb.Collection;
import tech.amikos.chromadb.embeddings.DefaultEmbeddingFunction;
import java.util.*;
public class Main {
public static void main(String[] args) {
try {
Client client = new Client(System.getenv("CHROMA_URL"));
client.reset();
EmbeddingFunction ef = new DefaultEmbeddingFunction();
Collection collection = client.createCollection("test-collection", null, true, ef);
List<Map<String, String>> metadata = new ArrayList<>();
metadata.add(new HashMap<String, String>() {{
put("type", "scientist");
}});
metadata.add(new HashMap<String, String>() {{
put("type", "spy");
}});
collection.add(null, metadata, Arrays.asList("Hello, my name is John. I am a Data Scientist.", "Hello, my name is Bond. I am a Spy."), Arrays.asList("1", "2"));
Collection.QueryResponse qr = collection.query(Arrays.asList("Who is the spy"), 10, null, null, null);
System.out.println(qr);
} catch (Exception e) {
System.out.println(e);
}
}
}
In this example we rely on tech.amikos.chromadb.embeddings.openai.OpenAIEmbeddingFunction
to generate embeddings for
our documents.
| Important: Ensure you have OPENAI_API_KEY
environment variable set
package tech.amikos;
import tech.amikos.chromadb.Client;
import tech.amikos.chromadb.Collection;
import tech.amikos.chromadb.EmbeddingFunction;
import tech.amikos.chromadb.embeddings.openai.OpenAIEmbeddingFunction;
import java.util.*;
public class Main {
public static void main(String[] args) {
try {
Client client = new Client(System.getenv("CHROMA_URL"));
String apiKey = System.getenv("OPENAI_API_KEY");
EmbeddingFunction ef = new OpenAIEmbeddingFunction(apiKey, "text-embedding-3-small");
Collection collection = client.createCollection("test-collection", null, true, ef);
List<Map<String, String>> metadata = new ArrayList<>();
metadata.add(new HashMap<String, String>() {{
put("type", "scientist");
}});
metadata.add(new HashMap<String, String>() {{
put("type", "spy");
}});
collection.add(null, metadata, Arrays.asList("Hello, my name is John. I am a Data Scientist.", "Hello, my name is Bond. I am a Spy."), Arrays.asList("1", "2"));
Collection.QueryResponse qr = collection.query(Arrays.asList("Who is the spy"), 10, null, null, null);
System.out.println(qr);
} catch (Exception e) {
e.printStackTrace();
System.out.println(e);
}
}
}
The above should output:
{"documents":[["Hello, my name is Bond. I am a Spy.","Hello, my name is John. I am a Data Scientist."]],"ids":[["2","1"]],"metadatas":[[{"type":"spy"},{"type":"scientist"}]],"distances":[[0.28461432,0.50961685]]}
For endpoints compatible with OpenAI Embeddings API (e.g. ollama), you can use the following:
Note: We have added a builder to help with the configuration of the OpenAIEmbeddingFunction
EmbeddingFunction ef = OpenAIEmbeddingFunction.Instance()
.withOpenAIAPIKey(apiKey)
.withModelName("llama2")
.withApiEndpoint("http://localhost:11434/api/embedding") // not really custom, but just to test the method
.build();
Quick Start Guide with Ollama:
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
docker exec -it ollama ollama run llama2 # press Ctrl+D to exit after model downloads successfully
# test it
curl http://localhost:11434/api/embeddings -d '{\n "model": "llama2",\n "prompt": "Here is an article about llamas..."\n}'
In this example we rely on tech.amikos.chromadb.embeddings.cohere.CohereEmbeddingFunction
to generate embeddings for
our documents.
| Important: Ensure you have COHERE_API_KEY
environment variable set
package tech.amikos;
import tech.amikos.chromadb.*;
import tech.amikos.chromadb.Collection;
import tech.amikos.chromadb.embeddings.cohere.CohereEmbeddingFunction;
import java.util.*;
public class Main {
public static void main(String[] args) {
try {
Client client = new Client(System.getenv("CHROMA_URL"));
client.reset();
String apiKey = System.getenv("COHERE_API_KEY");
EmbeddingFunction ef = new CohereEmbeddingFunction(apiKey);
Collection collection = client.createCollection("test-collection", null, true, ef);
List<Map<String, String>> metadata = new ArrayList<>();
metadata.add(new HashMap<String, String>() {{
put("type", "scientist");
}});
metadata.add(new HashMap<String, String>() {{
put("type", "spy");
}});
collection.add(null, metadata, Arrays.asList("Hello, my name is John. I am a Data Scientist.", "Hello, my name is Bond. I am a Spy."), Arrays.asList("1", "2"));
Collection.QueryResponse qr = collection.query(Arrays.asList("Who is the spy"), 10, null, null, null);
System.out.println(qr);
} catch (Exception e) {
e.printStackTrace();
System.out.println(e);
}
}
}
The above should output:
{"documents":[["Hello, my name is Bond. I am a Spy.","Hello, my name is John. I am a Data Scientist."]],"ids":[["2","1"]],"metadatas":[[{"type":"spy"},{"type":"scientist"}]],"distances":[[5112.614,10974.804]]}
In this example we rely on tech.amikos.chromadb.embeddings.hf.HuggingFaceEmbeddingFunction
to generate embeddings for
our documents using HuggingFace cloud-based inference API.
| Important: Ensure you have HF_API_KEY
environment variable set
package tech.amikos;
import tech.amikos.chromadb.*;
import tech.amikos.chromadb.Collection;
import tech.amikos.chromadb.embeddings.hf.HuggingFaceEmbeddingFunction;
import java.util.*;
public class Main {
public static void main(String[] args) {
try {
Client client = new Client("http://localhost:8000");
String apiKey = System.getenv("HF_API_KEY");
EmbeddingFunction ef = new HuggingFaceEmbeddingFunction(apiKey);
Collection collection = client.createCollection("test-collection", null, true, ef);
List<Map<String, String>> metadata = new ArrayList<>();
metadata.add(new HashMap<String, String>() {{
put("type", "scientist");
}});
metadata.add(new HashMap<String, String>() {{
put("type", "spy");
}});
collection.add(null, metadata, Arrays.asList("Hello, my name is John. I am a Data Scientist.", "Hello, my name is Bond. I am a Spy."), Arrays.asList("1", "2"));
Collection.QueryResponse qr = collection.query(Arrays.asList("Who is the spy"), 10, null, null, null);
System.out.println(qr);
} catch (Exception e) {
System.out.println(e);
}
}
}
The above should output:
{"documents":[["Hello, my name is Bond. I am a Spy.","Hello, my name is John. I am a Data Scientist."]],"ids":[["2","1"]],"metadatas":[[{"type":"spy"},{"type":"scientist"}]],"distances":[[0.9073759,1.6440368]]}
In this example we'll use a local Docker based server to generate the embeddings with
Snowflake/snowflake-arctic-embed-s
mode.
First let's start the HFEI server:
docker run -d -p 8008:80 --platform linux/amd64 --name hfei ghcr.io/huggingface/text-embeddings-inference:cpu-1.5.0 --model-id Snowflake/snowflake-arctic-embed-s --revision main
Note: Check the official documentation for more details - https://github.com/huggingface/text-embeddings-inference
Then we can use the following code to generate embeddings. Note the use of
new HuggingFaceEmbeddingFunction.WithAPIType(HuggingFaceEmbeddingFunction.APIType.HFEI_API));
to define the API type,
this will ensure the client uses the correct endpoint.
package tech.amikos;
import tech.amikos.chromadb.*;
import tech.amikos.chromadb.Collection;
import tech.amikos.chromadb.embeddings.hf.HuggingFaceEmbeddingFunction;
import java.util.*;
public class Main {
public static void main(String[] args) {
try {
Client client = new Client("http://localhost:8000");
EmbeddingFunction ef = new HuggingFaceEmbeddingFunction(
WithParam.baseAPI("http://localhost:8008"),
new HuggingFaceEmbeddingFunction.WithAPIType(HuggingFaceEmbeddingFunction.APIType.HFEI_API));
Collection collection = client.createCollection("test-collection", null, true, ef);
List<Map<String, String>> metadata = new ArrayList<>();
metadata.add(new HashMap<String, String>() {{
put("type", "scientist");
}});
metadata.add(new HashMap<String, String>() {{
put("type", "spy");
}});
collection.add(null, metadata, Arrays.asList("Hello, my name is John. I am a Data Scientist.", "Hello, my name is Bond. I am a Spy."), Arrays.asList("1", "2"));
Collection.QueryResponse qr = collection.query(Arrays.asList("Who is the spy"), 10, null, null, null);
System.out.println(qr);
} catch (Exception e) {
System.out.println(e);
}
}
}
The above should similar to the following output:
{"documents":[["Hello, my name is Bond. I am a Spy.","Hello, my name is John. I am a Data Scientist."]],"ids":[["2","1"]],"metadatas":[[{"type":"spy"},{"type":"scientist"}]],"distances":[[0.19665092,0.42433012]]}
In this example we rely on tech.amikos.chromadb.embeddings.ollama.OllamaEmbeddingFunction
to generate embeddings for
our documents.
package tech.amikos;
import tech.amikos.chromadb.*;
import tech.amikos.chromadb.embeddings.ollama.OllamaEmbeddingFunction;
import tech.amikos.chromadb.Collection;
import java.util.*;
public class Main {
public static void main(String[] args) {
try {
Client client = new Client(System.getenv("CHROMA_URL"));
client.reset();
EmbeddingFunction ef = new OllamaEmbeddingFunction();
Collection collection = client.createCollection("test-collection", null, true, ef);
List<Map<String, String>> metadata = new ArrayList<>();
metadata.add(new HashMap<String, String>() {{
put("type", "scientist");
}});
metadata.add(new HashMap<String, String>() {{
put("type", "spy");
}});
collection.add(null, metadata, Arrays.asList("Hello, my name is John. I am a Data Scientist.", "Hello, my name is Bond. I am a Spy."), Arrays.asList("1", "2"));
Collection.QueryResponse qr = collection.query(Arrays.asList("Who is the spy"), 10, null, null, null);
System.out.println(qr);
} catch (Exception e) {
System.out.println(e);
}
}
}
Note: This is a workaround until the client overhaul is completed
Basic Auth:
package tech.amikos;
import tech.amikos.chromadb.*;
import tech.amikos.chromadb.Collection;
import java.util.*;
public class Main {
public static void main(String[] args) {
try {
Client client = new Client(System.getenv("CHROMA_URL"));
String encodedString = Base64.getEncoder().encodeToString("admin:admin".getBytes());
client.setDefaultHeaders(new HashMap<>() {{
put("Authorization", "Basic " + encodedString);
}});
// your code here
} catch (Exception e) {
System.out.println(e);
}
}
}
Static Auth - Authorization:
package tech.amikos;
import tech.amikos.chromadb.*;
import tech.amikos.chromadb.Collection;
import java.util.*;
public class Main {
public static void main(String[] args) {
try {
Client client = new Client(System.getenv("CHROMA_URL"));
String encodedString = Base64.getEncoder().encodeToString("admin:admin".getBytes());
client.setDefaultHeaders(new HashMap<>() {{
put("Authorization", "Bearer test-token");
}});
// your code here
} catch (Exception e) {
System.out.println(e);
}
}
}
Static Auth - X-Chroma-Token:
package tech.amikos;
import tech.amikos.chromadb.*;
import tech.amikos.chromadb.Collection;
import java.util.*;
public class Main {
public static void main(String[] args) {
try {
Client client = new Client(System.getenv("CHROMA_URL"));
String encodedString = Base64.getEncoder().encodeToString("admin:admin".getBytes());
client.setDefaultHeaders(new HashMap<>() {{
put("X-Chroma-Token", "test-token");
}});
// your code here
} catch (Exception e) {
System.out.println(e);
}
}
}
We have made some minor changes on top of the ChromaDB API (src/main/resources/openapi/api.yaml
) so that the API can
work with Java and Swagger Codegen. The reason is that statically type languages like Java don't like the anyOf
and oneOf
keywords (This also is the reason why we don't use the generated java client for OpenAI API).
Pull requests are welcome.