This is a Tensorflow re-implementation of Luo, W., & Schwing, A. G. (n.d.). Efficient Deep Learning for Stereo Matching. (https://www.cs.toronto.edu/~urtasun/publications/luo_etal_cvpr16.pdf)
data
└───kitti_2015
│─── training
|───image_2
|───000000_10.png
|───000001_10.png
|─── ...
|───image_3
|───disp_noc_0
|─── ...
│─── testing
|───image_2
|───image_3
python main.py --dataset kitti_2015 --patch-size 37 --disparity-range 201
Example input images
Disparity Ground-truth
Without cost-aggregation
With cost-aggregation
A closer look to observe the smoothing of predictions, without cost aggregation and with respectively:
To compare with results reported in paper, look at Table-5, column Ours(37)
.
3-pixel error (%) | |
---|---|
baseline (paper) | 7.13 |
baseline (re-implementation) | 7.271 |
baseline + CA (paper) | 6.58 |
baseline + CA (re-implementation) | 6.527 |
B x H x W x W
tensor, use a loop to compute cost volume over the disparity range. Tensorflow VM might figure out that it should parallelise operations over the loop.