amrit110 / stereo_matching

Tensorflow implementation of "Efficient Deep Learning for Stereo Matching"
20 stars 5 forks source link
deep-learning stereo-matching stereo-vision

stereo_matching

This is a Tensorflow re-implementation of Luo, W., & Schwing, A. G. (n.d.). Efficient Deep Learning for Stereo Matching. (https://www.cs.toronto.edu/~urtasun/publications/luo_etal_cvpr16.pdf)

To run

Setup data folders

data
└───kitti_2015
    │─── training
         |───image_2
             |───000000_10.png
             |───000001_10.png
             |─── ...
         |───image_3
         |───disp_noc_0
         |─── ...
    │─── testing
         |───image_2
         |───image_3

Start training

python main.py --dataset kitti_2015 --patch-size 37 --disparity-range 201

Results

KITTI 2015 Stereo

Example input images

Disparity Ground-truth

Example input patches

Qualitative results

Post-processing

Without cost-aggregation

With cost-aggregation

A closer look to observe the smoothing of predictions, without cost aggregation and with respectively:

Quantitative results

KITTI 2012 Stereo

Qualitative results

Possible next steps