andresperezEUT / ambisonic_rt_estimation

Ambisonic Blind Reverberation Time Estimation
10 stars 7 forks source link

Ambisonic Blind Reverberation Time Estimation

This repository contains the complementary code for the paper:

Andrés Pérez-López, Archontis Politis, and Emilia Gómez. "Blind reverberation time estimation from ambisonic recordings". Submitted to the IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP 2020).

It implements a novel method for ambisonic blind reverberation time estimation, based on a Multichannel Auto-Recursive dereverberation followed by filter identification.

Getting Started

  1. create_IRs.py This script will create a set of 100 IRs, with which to work later on.

  2. run_experiment_dev_baseline.py It will run the baseline system on the development set, with the aim of estimating the linear fitting parameters at the output.

  3. run_experiment.py This is the main script. It will run the three described methods on the testing set. It might take a while...

  4. analysis_dev_baseline.py It analyzes the output produced by run_experiment_dev_baseline.py, and computes the fitting parameters using the groundtruth values.

  5. analysis.py All method results are analyzed and plotted here.

Datasets

The current implementation makes use of two datasets:

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur "LibriSpeech: an ASR corpus based on public domain audio books", In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2015).

Please make sure that you have them in your system, and you set the paths accordingly.

Nonetheless, any other desired dataset could be potientially used.

Dependencies

License

All the code here, excepting the contents of the ctf folder, is covered under the 3-Clause BSD License.