angeladai / sgnn

[CVPR'20] SG-NN: Sparse Generative Neural Networks for Self-Supervised Scene Completion of RGB-D Scans
Other
186 stars 23 forks source link
3d-reconstruction computer-graphics computer-vision deep-learning self-supervised-learning

SG-NN

SG-NN presents a self-supervised approach that converts partial and noisy RGB-D scans into high-quality 3D scene reconstructions by inferring unobserved scene geometry. For more details please see our paper SG-NN: Sparse Generative Neural Networks for Self-Supervised Scene Completion of RGB-D Scans.

Code

Installation:

Training is implemented with PyTorch. This code was developed under PyTorch 1.1.0, Python 2.7, and uses SparseConvNet.

For visualization, please install the marching cubes by python setup.py install in marching_cubes.

Training:

Testing

Data:

Citation:

If you find our work useful in your research, please consider citing:

@inproceedings{dai2020sgnn,
 title={SG-NN: Sparse Generative Neural Networks for Self-Supervised Scene Completion of RGB-D Scans},
 author = {Dai, Angela and Diller, Christian and Nie{\ss}ner, Matthias},
 booktitle = {Proc. Computer Vision and Pattern Recognition (CVPR), IEEE},
 year = {2020}
}