This small package helps with plotting Hasse Diagrams and is very useful when presenting results for the MCDA methods.
pip install hasse-diagram
import numpy as np
from hassediagram import plot_hasse
data = np.array([
[0, 1, 1, 1, 1],
[0, 0, 1, 0, 1],
[0, 1, 0, 0, 1],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]
])
labels = ["node a", "node b", "node c", "node d", "node e"]
plot_hasse(data, labels)
Result:
import numpy as np
from hassediagram import hasse_graphviz
data = np.array([
[0, 1, 1, 1, 1],
[0, 0, 1, 0, 1],
[0, 1, 0, 0, 1],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]
])
labels = ["node a", "node b", "node c", "node d", "node e"]
print(hasse_graphviz(data, labels))
Result:
digraph {
graph [bgcolor="#FFFFFF"]
node [color="#E2E8F0" fontname="Segoe UI" fontsize="15 pt" style=filled]
edge [arrowhead=vee color=black]
compound=true
node1 [label="node a"]
node2 [label="node b, node c"]
node3 [label="node d"]
node4 [label="node e"]
node1 -> node2
node1 -> node3
node2 -> node4
subgraph cluster_1 {
rank=same
peripheries=0
}
subgraph cluster_2 {
rank=same
node1
peripheries=0
}
subgraph cluster_3 {
rank=same
node2
node3
peripheries=0
}
subgraph cluster_4 {
rank=same
node4
peripheries=0
}
}
You can optionally turn off the transitive reduction and change the color of nodes and edges.
pytest --cov=src --cov-report=term-missing
This package is inspired by a similar one for R: hasseDiagram