Library computes centrality for entire graph and returns object, where keys are nodes' identifiers and values are centrality values:
{
node_1: centrality_value_for_node_1,
node_2: centrality_value_for_node_2
// ...
}
var centrality = require('ngraph.centrality');
var g = require('ngraph.graph')();
// Let's build a simple graph:
g.addLink('fortran', 'c');
g.addLink('c', 'c++');
g.addLink('c++', 'perl');
g.addLink('c', 'javascript');
// this will consider graph as undirected:
var degreeCentrality = centrality.degree(g);
/*
degreeCentrality is:
{
"fortran": 1,
"c": 3,
"c++": 2,
"perl": 1,
"javascript": 1
}
*/
// This will compute in-centrality:
var inCentrality = centrality.degree(g, 'in');
/* inCentrality is
{
"fortran": 0,
"c": 1,
"c++": 1,
"perl": 1,
"javascript": 1
}
*/
// out-centrality:
var outCentrality = centrality.degree(g, 'out');
/* outCentrality is
{
"fortran": 1,
"c": 2,
"c++": 1,
"perl": 0,
"javascript": 0
}
*/
// You can also pass 'inout' or 'both' to get same results
// as `degreeCentrality`
var sameAsDegreeCentrality = centrality.degree(g, 'inout');
Performance of degree centrality calculation is:
O(n)
, where n
is number of nodesO(n * a)
, where a
is the average number of edges per
nodevar centrality = require('ngraph.centrality');
var g = require('ngraph.graph')();
// Let's use the same graph as before:
g.addLink('fortran', 'c');
g.addLink('c', 'c++');
g.addLink('c++', 'perl');
g.addLink('c', 'javascript');
// this will consider graph as undirected:
var betweenness = centrality.betweenness(g);
/* betweenness centrality is:
{
"fortran": 0,
"c": 5,
"c++": 3,
"perl": 0,
"javascript": 0
}
*/
// this will consider graph as directed:
var directedBetweenness = centrality.betweenness(g, true);
/* directedBetweenness is:
{
"fortran": 0,
"c": 3,
"c++": 2,
"perl": 0,
"javascript": 0
}
*/
Performance of betweenness calculation is O(n * e)
time, and O(n + e)
space
where n
is number of nodes and e
is number of edges.
This library implements Brandes's algorithm published in A Faster Algorithm for Betweenness Centrality and further discussed in On Variants of Shortest-Path Betweenness Centrality and their Generic Computation.
In a connected graph, the normalized closeness centrality of a node is the average length of the shortest path between the node and all other nodes in the graph. Thus the more central a node is, the closer it is to all other nodes.
var centrality = require('ngraph.centrality');
var g = createGraph();
g.addLink(1, 2);
g.addLink(2, 3);
var closeness = centrality.closeness(g);
// closeness is:
// {
// '1': 0.6666666666666666,
// '2': 1,
// '3': 0.6666666666666666
// }
The eccentricity centrality of a node is the greatest distance between that node and any other node in the network. It can be thought of as how far a node is from the node most distant from it in the graph.
var centrality = require('ngraph.centrality');
var g = createGraph();
g.addLink(1, 2);
g.addLink(2, 3);
var eccentricity = centrality.eccentricity(g);
// eccentricity is:
// {
// '1': 2,
// '2': 1,
// '3': 2
// }
Since the graph's diameter equals maximum eccentricity, we can easily calculate this using the returned object:
var eccentricityValues = Object.keys(eccentricity).map(function(key) {return eccentricity[key]});
var diameter = Math.max.apply(null, eccentricityValues);
// Returns 2
With npm do:
npm install ngraph.centrality
MIT
It would be nice to have asynchronous version for each centrality calculator.