apache / amoro

Apache Amoro (incubating) is a Lakehouse management system built on open data lake formats.
https://amoro.apache.org/
Apache License 2.0
874 stars 290 forks source link
bigdata datalake lakehouse

Amoro logo

Apache Amoro (incubating) is a Lakehouse management system built on open data lake formats. Working with compute engines including Flink, Spark, and Trino, Amoro brings pluggable and self-managed features for Lakehouse to provide out-of-the-box data warehouse experience, and helps data platforms or products easily build infra-decoupled, stream-and-batch-fused and lake-native architecture.

Learn more about Amoro at https://amoro.apache.org/, contact the developers and community on the mailing list if you need any help.

Architecture

Here is the architecture diagram of Amoro:

Amoro architecture

Supported table formats

Amoro can manage tables of different table formats, similar to how MySQL/ClickHouse can choose different storage engines. Amoro meets diverse user needs by using different table formats. Currently, Amoro supports four table formats:

Supported engines

Iceberg format

Iceberg format tables use the engine integration method provided by the Iceberg community. For details, please refer to: Iceberg Docs.

Mixed format

Amoro support multiple processing engines for Mixed format as below:

Processing Engine Version Batch Read Batch Write Batch Overwrite Streaming Read Streaming Write Create Table Alter Table
Flink 1.15.x, 1.16.x, 1.17.x
Spark 3.1, 3.2, 3.3
Hive 2.x, 3.x
Trino 406

Features

Modules

Amoro contains modules as below:

Building

Amoro is built using Maven with JDK 8 and JDK 17(only for amoro-format-mixed/amoro-mixed-trino module).

<?xml version="1.0" encoding="UTF-8"?>
<toolchains>
    <toolchain>
        <type>jdk</type>
        <provides>
            <version>17</version>
            <vendor>sun</vendor>
        </provides>
        <configuration>
            <jdkHome>${YourJDK17Home}</jdkHome>
        </configuration>
    </toolchain>
</toolchains>

Quickstart

Visit https://amoro.apache.org/quick-demo/ to quickly explore what amoro can do.

Join Community

If you are interested in Lakehouse, Data Lake Format, welcome to join our community, we welcome any organizations, teams and individuals to grow together, and sincerely hope to help users better use Data Lake Format through open source.

Join the Amoro WeChat Group: Add " kllnn999 " as a friend on WeChat and specify "Amoro lover".

Contributors

This project exists thanks to all the people who contribute.

Made with contrib.rocks.

Star History

Star History Chart