DataLab Overview
CONTENTS
What is DataLab?
How to Contribute
Logical architecture
Physical architecture
DataLab Deployment
Structure of main DataLab directory
Structure of log directory
Preparing environment for DataLab deployment
Keycloak server
Self-Service Node
Endpoint Node
Edge Node
Notebook node
Dataengine-service cluster
Dataengine cluster
Configuration files
Starting/Stopping services
Billing report
Backup and Restore
GitLab server
Troubleshooting
Development
Folder structure
Pre-requisites
Java back-end services
Front-end
How to setup local development environment
How to run locally
Infrastructure provisioning
LDAP Authentication
Azure OAuth2 Authentication
What is DataLab?
DataLab is an essential toolset for analytics. It is a self-service Web Console, used to create and manage exploratory
environments. It allows teams to spin up analytical environments with best of breed open-source tools just with a
single click of the mouse. Once established, environment can be managed by an analytical team itself, leveraging simple
and easy-to-use Web Interface.
See more at datalab.incubator.apache.org.
Logical architecture
The following diagram demonstrate high-level logical architecture.
The diagram shows main components of DataLab, which is a self-service for the infrastructure deployment and interaction
with it. The purpose of each component is described below.
Self-Service
Self-Service is a service, which provides RESTful user API with Web User Interface for data scientist. It tightly
interacts with Provisioning Service and Database. Self-Service delegates all user`s requests to Provisioning Service.
After execution of certain request from Self-service, Provisioning Service returns response about corresponding action
happened with particular resource. Self-service, then, saves this response into Database. So, each time Self-Service
receives request about status of provisioned infrastructure resources – it loads it from Database and propagates to Web UI.
Billing
Billing is a module, which provides a loading of the billing report for the environment to the database. It can be
running as part of the Self-Service or a separate process.
Provisioning Service
The Provisioning Service is a RESTful service, which provides APIs for provisioning of the user’s infrastructure.
Provisioning Service receives the request from Self-Service, afterwards it forms and sends a command to the docker
to execute requested action. Docker executes the command and generates a response.json file. Provisioning service
analyzes response.json and responds to initial request of Self-Service, providing status-related information of the instance.
Security service
Security Service is RESTful service, which provides authorization API for Self-Service and Provisioning Service via LDAP.
Docker
Docker is an infrastructure-provisioning module based on Docker service, which provides low-level actions for infrastructure management.
Database
Database serves as a storage with description of user infrastructure, user’s settings and service information.
Physical architecture
The following diagrams demonstrate high-level physical architecture of DataLab in AWS, GCP and Azure.
DataLab high level Architecture on AWS:
DataLab high level Architecture on GCP:
DataLab high level Architecture on Azure:
Main components
- Self-service node (SSN)
- Endpoint node
- Edge node
- Notebook node (Jupyter, Rstudio, etc.)
- Data engine cluster
- Data engine cluster as a service provided with Cloud
Self-service node (SSN)
Creation of self-service node – is the first step for deploying DataLab. SSN is a main server with following pre-installed services:
- DataLab Web UI – is Web user interface for managing/deploying all components of DataLab. It is accessible by the
following URL: http[s]://SSN_Public_IP_or_Public_DNS
- MongoDB – is a database, which contains part of DataLab’s configuration, user’s exploratory environments description
as well as user’s preferences.
- Docker – used for building DataLab Docker containers, which will be used for provisioning other components.
Elastic(Static) IP address is assigned to an SSN Node, so you are free to stop|start it and and SSN node's IP address
won’t change.
Endpoint
This is a node which serves as a provisioning endpoint for DataLab resources. Endpoint machine is deployed separately from DataLab
installation and can be even deployed on a different cloud.
Edge node
This node is used as a reverse-proxy server for the user. Through Edge node users can access Notebook via HTTPS.
Edge Node has a Nginx reverse-proxy pre-installed.
Notebook node
The next step is setting up a Notebook node (or a Notebook server). It is a server with pre-installed applications and
libraries for data processing, data cleaning and transformations, numerical simulations, statistical modeling, machine
learning, etc. Following analytical tools are currently supported in DataLab and can be installed on a Notebook node:
- Jupyter
- Jupyterlab
- RStudio
- Apache Zeppelin
- TensorFlow + Jupyter
- TensorFlow + RStudio
- Deep Learning + Jupyter
Apache Spark is also installed for each of the analytical tools above.
Note: terms 'Apache Zeppelin' and 'Apache Spark' hereinafter may be referred to as 'Zeppelin' and 'Spark'
respectively or may have original reference.
Data engine cluster
After deploying Notebook node, user can create one of the cluster for it:
- Data engine - Spark standalone cluster
-
Data engine service - cloud managed cluster platform (EMR for AWS or Dataproc for GCP)
That simplifies running big data frameworks, such as Apache Hadoop and Apache Spark to process and analyze vast amounts
of data. Adding cluster is not mandatory and is only needed in case additional computational resources are required for
job execution.
DataLab Deployment
Structure of main DataLab directory
DataLab’s SSN node main directory structure is as follows:
/opt
└───datalab
├───conf
├───sources
├───template
├───tmp
│ └───result
└───webapp
- conf – contains configuration for DataLab Web UI and back-end services;
- sources – contains all Docker/Python scripts, templates and files for provisioning;
- template – docker’s templates;
- tmp –temporary directory of DataLab;
- tmp/result – temporary directory for Docker’s response files;
- webapp – contains all .jar files for DataLab Web UI and back-end
services.
Structure of log directory
SSN node structure of log directory is as follows:
/var
└───opt
└───datalab
└───log
├───dataengine
├───dateengine-service
├───edge
├───notebook
├───project
└───ssn
These directories contain the log files for each template and for DataLab back-end services.
- ssn – contains logs of back-end services;
- provisioning.log – Provisioning Service log file;
- security.log – Security Service log file;
- selfservice.log – Self-Service log file;
- edge, notebook, dataengine, dataengine-service – contains logs of Python scripts.
Keycloak server
Keycloak is used to manage user authentication instead of the aplication. To use existing server following
parameters must be specified either when running DataLab deployment script or in
/opt/datalab/conf/self-service.yml and /opt/datalab/conf/provisioning.yml files on SSN node.
Parameter |
Description/Value |
keycloak_realm_name |
Keycloak Realm name |
keycloak_auth_server_url |
Keycloak auth server URL |
keycloak_client_secret |
Keycloak client secret (optional) |
keycloak_user |
Keycloak user |
keycloak_user_password |
Keycloak user password |
Preparing environment for Keycloak deployment
Keycloak can be deployed with Nginx proxy on instance using deploy_keycloak.py script. Currently it only works with HTTP.
Preparation steps for deployment:
- Create an VM instance with the following settings:
- The instance should have access to Internet in order to install required prerequisites
- Boot disk OS Image - Ubuntu 18.04
- Put private key that is used to connect to instance where Keycloak will be deployed somewhere on the instance where
deployment script will be executed.
- Install Git and clone DataLab repository
Executing deployment script
To build Keycloak node, following steps should be executed:
- Connect to the instance via SSH and run the following commands:
sudo su
apt-get update
apt-get install -y python3-pip
pip3 install fabric
- Go to datalab directory
- Run infrastructure-provisioning/scripts/deploy_keycloak/deploy_keycloak.py deployment script:
/usr/bin/python3 infrastructure-provisioning/scripts/deploy_keycloak/deploy_keycloak.py --os_user ubuntu --keyfile ~/.ssh/key.pem --keycloak_realm_name test_realm_name --keycloak_user admin --keycloak_user_password admin_password --public_ip_address XXX.XXX.XXX.XXX
List of parameters for Keycloak node deployment:
Parameter |
Description/Value |
os_user |
username, used to connect to the instance |
keyfile |
/path_to_key/private_key.pem, used to connect to instance |
keycloak_realm_name |
Keycloak realm name that will be created |
keycloak_user |
initial keycloak admin username |
keycloak_user_password |
password for initial keycloak admin user |
public_ip_address |
Public IP address of the instance (if not specified, keycloak will be deployed on localhost) (On AWS try to specify Public DNS (IPv4) instead of IPv4 if unable to connect) |
Self-Service Node
Preparing environment for DataLab deployment
Deployment of DataLab starts from creating Self-Service(SSN) node. DataLab can be deployed in AWS, Azure and Google cloud.
For each cloud provider, prerequisites are different.
In Amazon cloud (click to expand)
Prerequisites:
DataLab can be deployed using the following two methods:
- IAM user: DataLab deployment script is executed on local machine and uses IAM user permissions to create resources in AWS.
- EC2 instance: DataLab deployment script is executed on EC2 instance prepared in advance and with attached IAM role.
Deployment script uses the attached IAM role to create resources in AWS.
**'IAM user' method prerequisites:**
- IAM user with created AWS access key ID and secret access key. These keys are provided as arguments for the
deployment script and are used to create resources in AWS.
- Amazon EC2 Key Pair. This key is system and is used for configuring DataLab instances.
- The following IAM [policy](#AWS_SSN_policy) should be attached to the IAM user in order to deploy DataLab.
**'EC2 instance' method prerequisites:**
- Amazon EC2 Key Pair. This key is system and is used for configuring DataLab instances.
- EC2 instance where DataLab deployment script is executed.
- IAM role with the following IAM [policy](#AWS_SSN_policy) should be attached to the EC2 instance.
**Optional prerequisites for both methods:**
- VPC ID. If VPC where DataLab should be deployed is already in place, then "VPC ID" should be provided for deployment
script. DataLab instances are deployed in this VPC.
- Subnet ID. If Subnet where DataLab should be deployed is already in place, then "Subnet ID" should be provided for
deployment script. DataLab SSN node and users' Edge nodes are deployed in this Subnet.
DataLab IAM Policy
```
{
"Version": "2012-10-17",
"Statement": [
{
"Action": [
"iam:CreatePolicy",
"iam:AttachRolePolicy",
"iam:DetachRolePolicy",
"iam:DeletePolicy",
"iam:DeleteRolePolicy",
"iam:GetRolePolicy",
"iam:GetPolicy",
"iam:GetUser",
"iam:ListUsers",
"iam:ListAccessKeys",
"iam:ListUserPolicies",
"iam:ListAttachedRolePolicies",
"iam:ListPolicies",
"iam:ListRolePolicies",
"iam:ListRoles",
"iam:CreateRole",
"iam:CreateInstanceProfile",
"iam:PutRolePolicy",
"iam:AddRoleToInstanceProfile",
"iam:PassRole",
"iam:GetInstanceProfile",
"iam:ListInstanceProfilesForRole",
"iam:RemoveRoleFromInstanceProfile",
"iam:DeleteInstanceProfile",
"iam:ListInstanceProfiles",
"iam:DeleteRole",
"iam:GetRole"
],
"Effect": "Allow",
"Resource": "*"
},
{
"Action": [
"ec2:AuthorizeSecurityGroupEgress",
"ec2:AuthorizeSecurityGroupIngress",
"ec2:DeleteRouteTable",
"ec2:DeleteSubnet",
"ec2:DeleteTags",
"ec2:DescribeSubnets",
"ec2:DescribeVpcs",
"ec2:DescribeInstanceStatus",
"ec2:ModifyInstanceAttribute",
"ec2:RevokeSecurityGroupIngress",
"ec2:DescribeImages",
"ec2:CreateTags",
"ec2:DescribeRouteTables",
"ec2:CreateRouteTable",
"ec2:AssociateRouteTable",
"ec2:DescribeVpcEndpoints",
"ec2:CreateVpcEndpoint",
"ec2:ModifyVpcEndpoint",
"ec2:DescribeInstances",
"ec2:RunInstances",
"ec2:DescribeAddresses",
"ec2:AllocateAddress",
"ec2:AssociateAddress",
"ec2:DisassociateAddress",
"ec2:ReleaseAddress",
"ec2:TerminateInstances",
"ec2:AuthorizeSecurityGroupIngress",
"ec2:AuthorizeSecurityGroupEgress",
"ec2:DescribeSecurityGroups",
"ec2:CreateSecurityGroup",
"ec2:DeleteSecurityGroup",
"ec2:RevokeSecurityGroupEgress"
],
"Effect": "Allow",
"Resource": "*"
},
{
"Action": [
"s3:GetBucketLocation",
"s3:PutBucketPolicy",
"s3:GetBucketPolicy",
"s3:DeleteBucket",
"s3:DeleteObject",
"s3:GetObject",
"s3:ListBucket",
"s3:PutEncryptionConfiguration",
"s3:ListAllMyBuckets",
"s3:CreateBucket",
"s3:PutBucketTagging",
"s3:GetBucketTagging"
],
"Effect": "Allow",
"Resource": "*"
}
]
}
```
Preparation steps for deployment:
- Create an EC2 instance with the following settings:
- The instance should have access to Internet in order to install required prerequisites
- The instance should have access to further DataLab installation
- AMI - Ubuntu 20.04
- IAM role with [policy](#AWS_SSN_policy) should be assigned to the instance
- Put SSH key file created through Amazon Console on the instance with the same name
- Install Git and clone DataLab repository
In Azure cloud (click to expand)
Prerequisites:
- IAM user with Contributor permissions.
- Service principal and JSON based auth file with clientId, clientSecret and tenantId.
**Note:** The following permissions should be assigned to the service principal:
- Windows Azure Active Directory
- Microsoft Graph
- Windows Azure Service Management API
- Storage Blob Data Contributor Role
Preparation steps for deployment:
- Create a VM instance with the following settings:
- The instance should have access to Internet in order to install required prerequisites
- Image - Ubuntu 20.04
- Generate SSH key pair and rename private key with .pem extension
- Put JSON auth file to users home directory
In Google cloud (GCP) (click to expand)
Prerequisites:
- IAM user
- Service account and JSON auth file for it. In order to get JSON auth file, Key should be created for service account
through Google cloud console.
- Google Cloud Storage JSON API should be enabled
Preparation steps for deployment:
- Create an VM instance with the following settings:
- The instance should have access to Internet in order to install required prerequisites
- Boot disk OS Image - Ubuntu 20.04
- Generate SSH key pair and rename private key with .pem extension
- Put JSON auth file created through Google cloud console to users home directory
- Install Git and clone DataLab repository
Executing deployment script
To build SSN node, following steps should be executed:
- Connect to the instance via SSH and run the following commands:
sudo su
apt-get update
apt-get install git
git clone https://github.com/apache/incubator-datalab.git -b develop
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -
add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
apt-get update
apt-cache policy docker.io
apt-get install -y docker.io=20.10.7-0ubuntu1~20.04.1
usermod -a -G docker *username*
apt-get install -y python3-pip
pip3 install fabric
cd incubator-datalab
- Go to datalab directory
- Run infrastructure-provisioning/scripts/deploy_datalab.py deployment script:
This python script will build front-end and back-end part of DataLab, create SSN docker image and run Docker container
for creating SSN node.
In Amazon cloud (click to expand)
**Note:** cloud provider argument should be specified before arguments related to the cloud.
```
/usr/bin/python3 infrastructure-provisioning/scripts/deploy_datalab.py \
--conf_service_base_name datalab-test \
--conf_os_family debian \
--key_path /path/to/key/ \
--conf_key_name key_name \
--conf_tag_resource_id datalab \
--action create \
aws \
--aws_access_key XXXXXXX \
--aws_secret_access_key XXXXXXXXXX \
--aws_region xx-xxxxx-x \
--aws_vpc_id vpc-xxxxx \
--aws_subnet_id subnet-xxxxx \
--aws_security_groups_ids sg-xxxxx,sg-xxxx \
--aws_account_id xxxxxxxx \
--aws_billing_bucket billing_bucket \
--aws_report_path /billing/directory/
```
List of parameters for SSN node deployment:
| Parameter | Description/Value |
|---------------------------|-----------------------------------------------------------------------------------------|
| conf\_service\_base\_name | Any infrastructure value (should be unique if multiple SSN’s have been deployed before) |
| conf\_os\_family | Name of the Linux distributive family, which is supported by DataLab (Debian/RedHat) |
| conf\_duo\_vpc\_enable | "true" - for installing DataLab into two Virtual Private Clouds (VPCs) or "false" - for installing DataLab into one VPC. Also this parameter isn't required when deploy DataLab in one VPC|
| key\_path | Path to admin key (without key name) |
| conf\_key\_name | Name of the uploaded SSH key file (without “.pem” extension) |
| conf\_tag\_resource\_id | The name of tag for billing reports |
| action | In case of SSN node creation, this parameter should be set to “create”|
| workspace\_path | Path to DataLab sources root
| conf\_image\_enabled | Enable or Disable creating image at first time |
| conf\_cloud\_provider | Name of the cloud provider, which is supported by DataLab (AWS)
| aws\_access\_key | AWS user access key |
| aws\_secret\_access\_key | AWS user secret access key |
| aws\_region | AWS region |
| aws\_vpc\_id | ID of the VPC (optional) |
| aws\_subnet\_id | ID of the public subnet (optional) |
| aws\_security\_groups\_ids| One or more ID\`s of AWS Security Groups, which will be assigned to SSN node (optional) |
| aws\_account\_id | The The ID of Amazon account |
| aws\_billing\_bucket | The name of S3 bucket where billing reports will be placed |
| aws\_report\_path | The path to billing reports directory in S3 bucket. This parameter isn't required when billing reports are placed in the root of S3 bucket. |
**Note:** If the following parameters are not specified, they will be created automatically:
- aws\_vpc\_id
- aws\_subnet\_id
- aws\_sg\_ids
**Note:** If billing won't be used, the following parameters are not required:
- aws\_account\_id
- aws\_billing\_bucket
- aws\_report\_path
**SSN deployment creates following AWS resources:**
- SSN EC2 instance
- Elastic IP for SSN instance
- IAM role and EC2 Instance Profile for SSN
- Security Group for SSN node (if it was specified, script will attach the provided one)
- VPC, Subnet (if they have not been specified) for SSN and EDGE nodes
S3 bucket – its name will be \-ssn-bucket. This bucket will contain necessary dependencies and configuration files for Notebook nodes (such as .jar files, YARN configuration, etc.)
- S3 bucket for for collaboration between DataLab users. Its name will be \-\-shared-bucket
In Azure cloud (click to expand)
**Note:** cloud provider argument should be specified before arguments related to the cloud.
```
/usr/bin/python3 infrastructure-provisioning/scripts/deploy_datalab.py \
--conf_service_base_name datalab_test \
--conf_os_family debian \
--key_path /root/ \
--conf_key_name Test \
--azure_auth_path /dir/file.json \
--action create \
azure \
--azure_vpc_name vpc-test \
--azure_subnet_name subnet-test \
--azure_security_group_name sg-test1,sg-test2 \
--azure_region westus2
```
List of parameters for SSN node deployment:
| Parameter | Description/Value |
|-----------------------------------|-----------------------------------------------------------------------------------------|
| conf\_service\_base\_name | Any infrastructure value (should be unique if multiple SSN’s have been deployed before) |
| conf\_os\_family | Name of the Linux distributive family, which is supported by DataLab (Debian/RedHat) |
| key\_path | Path to admin key (without key name) |
| conf\_key\_name | Name of the uploaded SSH key file (without “.pem” extension) |
| conf\_image\_enabled | Enable or Disable creating image at first time |
| action | In case of SSN node creation, this parameter should be set to “create” |
| conf\_cloud\_provider | Name of the cloud provider, which is supported by DataLab (Azure) |
| azure\_vpc\_name | Name of the Virtual Network (VN) (optional) |
| azure\_subnet\_name | Name of the Azure subnet (optional) |
| azure\_security\_groups\_name | One or more Name\`s of Azure Security Groups, which will be assigned to SSN node (optional) |
| azure\_ssn\_instance\_size | Instance size of SSN instance in Azure |
| azure\_resource\_group\_name | Resource group name (can be the same as service base name |
| azure\_region | Azure region |
| azure\_auth\_path | Full path to auth json file |
| azure\_offer\_number | Azure offer id number |
| azure\_currency | Currency that is used for billing information(e.g. USD) |
| azure\_locale | Locale that is used for billing information(e.g. en-US) |
| azure\_region\_info | Region info that is used for billing information(e.g. US) |
| azure\_datalake\_enable | Support of Azure Data Lake (true/false) |
| azure\_oauth2\_enabled | Defines if Azure OAuth2 authentication mechanisms is enabled(true/false) |
| azure\_validate\_permission\_scope| Defines if DataLab verifies user's permission to the configured resource(scope) during login with OAuth2 (true/false). If Data Lake is enabled default scope is Data Lake Store Account, else Resource Group, where DataLab is deployed, is default scope. If user does not have any role in scope he/she is forbidden to log in
| azure\_application\_id | Azure application ID that is used to log in users in DataLab |
| azure\_ad\_group\_id | ID of group in Active directory whose members have full access to shared folder in Azure Data Lake Store |
**Note:** If the following parameters are not specified, they will be created automatically:
- azure\_vpc\_nam
- azure\_subnet\_name
- azure\_security\_groups\_name
**Note:** Billing configuration:
To know azure\_offer\_number open [Azure Portal](https://portal.azure.com), go to Subscriptions and open yours, then
click Overview and you should see it under Offer ID property:
![Azure offer number](doc/azure_offer_number.png)
Please see [RateCard API](https://msdn.microsoft.com/en-us/library/mt219004.aspx) to get more details about
azure\_offer\_number, azure\_currency, azure\_locale, azure\_region_info. These DataLab deploy properties correspond to
RateCard API request parameters.
To have working billing functionality please review Billing configuration note and use proper parameters for SSN node
deployment.
To use Data Lake Store please review Azure Data Lake usage pre-requisites note and use proper parameters for SSN node
deployment.
**Note:** Azure Data Lake usage pre-requisites:
1. Configure application in Azure portal and grant proper permissions to it.
- Open *Azure Active Directory* tab, then *App registrations* and click *New application registration*
- Fill in ui form with the following parameters *Name* - put name of the new application, *Application type* - select
Native, *Sign-on URL* put any valid url as it will be updated later
- Grant proper permissions to the application. Select the application you just created on *App registration* view, then
click *Required permissions*, then *Add->Select an API-> In search field type MicrosoftAzureQueryService* and press
*Select*, then check the box *Have full access to the Azure Data Lake service* and save the changes. Repeat the same
actions for *Windows Azure Active Directory* API (available on *Required permissions->Add->Select an API*) and the
box *Sign in and read user profile*
- Get *Application ID* from application properties it will be used as azure_application_id for deploy_dlap.py script
2. Usage of Data Lake resource predicts shared folder where all users can write or read any data. To manage access to
this folder please create ot use existing group in Active Directory. All users from this group will have RW access to
the shared folder. Put ID(in Active Directory) of the group as *azure_ad_group_id* parameter to deploy_datalab.py script
3. After execution of deploy_datalab.py script go to the application created in step 1 and change *Redirect URIs* value to
the https://SSN_HOSTNAME/ where SSN_HOSTNAME - SSN node hostname
After SSN node deployment following Azure resources will be created:
- Resource group where all DataLab resources will be provisioned
- SSN Virtual machine
- Static public IP address dor SSN virtual machine
- Network interface for SSN node
- Security Group for SSN node (if it was specified, script will attach the provided one)
- Virtual network and Subnet (if they have not been specified) for SSN and EDGE nodes
- Storage account and blob container for necessary further dependencies and configuration files for Notebook nodes (such as .jar files, YARN configuration, etc.)
- Storage account and blob container for collaboration between DataLab users
- If support of Data Lake is enabled: Data Lake and shared directory will be created
In Google cloud (GCP) (click to expand)
**Note:** cloud provider argument should be specified before arguments related to the cloud.
```
/usr/bin/python3 infrastructure-provisioning/scripts/deploy_datalab.py \
--conf_service_base_name datalab-test \
--conf_os_family debian \
--key_path /path/to/key/ \
--conf_key_name key_name \
--action create
gcp \
--gcp_ssn_instance_size n1-standard-1 \
--gcp_project_id project_id \
--gcp_service_account_path /path/to/auth/file.json \
--gcp_region xx-xxxxx \
--gcp_zone xxx-xxxxx-x \
```
List of parameters for SSN node deployment:
| Parameter | Description/Value |
|------------------------------|---------------------------------------------------------------------------------------|
| conf\_service\_base\_name | Any infrastructure value (should be unique if multiple SSN’s have been deployed before)|
| conf\_os\_family | Name of the Linux distributive family, which is supported by DataLab (Debian/RedHat) |
| key\_path | Path to admin key (without key name) |
| conf\_key\_name | Name of the uploaded SSH key file (without “.pem” extension) |
| action | In case of SSN node creation, this parameter should be set to “create” |
| conf\_image\_enabled | Enable or Disable creating image at first time |
| conf\_cloud\_provider | Name of the cloud provider, which is supported by DataLab (GCP) |
| gcp\_service\_account\_path | Full path to auth json file |
| gcp\_ssn\_instance\_size | Instance size of SSN instance in GCP |
| gcp\_project\_id | ID of GCP project |
| gcp\_region | GCP region |
| gcp\_zone | GCP zone |
| gcp\_vpc\_name | Name of the Virtual Network (VN) (optional) |
| gcp\_subnet\_name | Name of the GCP subnet (optional) |
| gcp\_firewall\_name | One or more Name\`s of GCP Security Groups, which will be assigned to SSN node (optional)|
| billing\_dataset\_name | Name of GCP dataset (BigQuery service) |
**Note:** If you gonna use Dataproc cluster, be aware that Dataproc has limited availability in GCP regions.
[Cloud Dataproc availability by Region in GCP](https://cloud.google.com/about/locations/)
After SSN node deployment following GCP resources will be created:
- SSN VM instance
- External IP address for SSN instance
- IAM role and Service account for SSN
- Security Groups for SSN node (if it was specified, script will attach the provided one)
- VPC, Subnet (if they have not been specified) for SSN and EDGE nodes
- Bucket for for collaboration between DataLab users. Its name will be
\-\-shared-bucket
Note: Optionally Nexus repository can be used to store DataLab jars and Docker images
List of parameters for repository usage during SSN deployment: (click to expand)
| Parameter | Description/Value |
|------------------------------|---------------------------------------------------------------------------------------|
| conf\_repository\_user | Username used to access repository |
| conf\_repository\_pass | Password used to access repository |
| conf\_repository\_address | URI/IP address used to access repository |
| conf\_repository\_port | Port of docker repository |
| conf\_download\_docker\_images | true to download docker images from repository (previous parameters are required) |
| conf\_download\_jars | true to download jars from repository (previous parameters are required) |
Terminating Self-Service Node
Terminating SSN node will also remove all nodes and components related to it. Basically, terminating Self-service node
will terminate all DataLab’s infrastructure.
Example of command for terminating DataLab environment:
In Amazon (click to expand)
```
/usr/bin/python3 infrastructure-provisioning/scripts/deploy_datalab.py --conf_service_base_name datalab-test --aws_access_key XXXXXXX --aws_secret_access_key XXXXXXXX --aws_region xx-xxxxx-x --key_path /path/to/key/ --conf_key_name key_name --conf_os_family debian --conf_cloud_provider aws --action terminate
```
List of parameters for SSN node termination:
| Parameter | Description/Value |
|----------------------------|------------------------------------------------------------------------------------|
| conf\_service\_base\_name | Unique infrastructure value |
| aws\_access\_key | AWS user access key |
| aws\_secret\_access\_key | AWS user secret access key |
| aws\_region | AWS region |
| key\_path | Path to admin key (without key name) |
| conf\_key\_name | Name of the uploaded SSH key file (without “.pem” extension) |
| conf\_os\_family | Name of the Linux distributive family, which is supported by DataLab (Debian/RedHat) |
| conf\_cloud\_provider | Name of the cloud provider, which is supported by DataLab (AWS) |
| action | terminate |
In Azure (click to expand)
```
/usr/bin/python3 infrastructure-provisioning/scripts/deploy_datalab.py --conf_service_base_name datalab-test --azure_vpc_name vpc-test --azure_resource_group_name resource-group-test --azure_region westus2 --key_path /root/ --conf_key_name Test --conf_os_family debian --conf_cloud_provider azure --azure_auth_path /dir/file.json --action terminate
```
List of parameters for SSN node termination:
| Parameter | Description/Value |
|----------------------------|------------------------------------------------------------------------------------|
| conf\_service\_base\_name | Unique infrastructure value |
| azure\_region | Azure region |
| conf\_os\_family | Name of the Linux distributive family, which is supported by DataLab (Debian/RedHat) |
| conf\_cloud\_provider | Name of the cloud provider, which is supported by DataLab (Azure) |
| azure\_vpc\_name | Name of the Virtual Network (VN) |
| key\_path | Path to admin key (without key name) |
| conf\_key\_name | Name of the uploaded SSH key file (without “.pem” extension) |
| azure\_auth\_path | Full path to auth json file |
| action | terminate |
In Google cloud (click to expand)
```
/usr/bin/python3 infrastructure-provisioning/scripts/deploy_datalab.py --gcp_project_id project_id --conf_service_base_name datalab-test --gcp_region xx-xxxxx --gcp_zone xx-xxxxx-x --key_path /path/to/key/ --conf_key_name key_name --conf_os_family debian --conf_cloud_provider gcp --gcp_service_account_path /path/to/auth/file.json --action terminate
```
List of parameters for SSN node termination:
| Parameter | Description/Value |
|------------------------------|---------------------------------------------------------------------------------------|
| conf\_service\_base\_name | Any infrastructure value (should be unique if multiple SSN’s have been deployed before)|
| gcp\_region | GCP region |
| gcp\_zone | GCP zone |
| conf\_os\_family | Name of the Linux distributive family, which is supported by DataLab (Debian/RedHat) |
| conf\_cloud\_provider | Name of the cloud provider, which is supported by DataLab (GCP) |
| gcp\_vpc\_name | Name of the Virtual Network (VN) (optional) |
| gcp\_subnet\_name | Name of the GCP subnet (optional) |
| key\_path | Path to admin key (without key name) |
| conf\_key\_name | Name of the uploaded SSH key file (without “.pem” extension) |
| gcp\_service\_account\_path | Full path to auth json file |
| gcp\_project\_id | ID of GCP project |
| action | In case of SSN node termination, this parameter should be set to “terminate” |
Note: It is required to enter gcp_vpc_name and gcp_subnet_name parameters if Self-Service Node was deployed in
pre-defined VPC and Subnet.
Endpoint node
This node allows you to create Edge nodes and Notebooks on other cloud providers (AWS, Microsoft Azure or GCP).
The exception is the option in which Edge nodes and Notebooks are created on the same cloud provider as Self-Service Node,
in which case endpoint is already provided locally.
Executing deployment script
In Amazon (click to expand)
```
source /venv/bin/activate
/venv/bin/python3 infrastructure-provisioning/terraform/bin/datalab.py deploy aws endpoint \
--access_key_id access_key \
--secret_access_key secret_access_key \
--key_name datalab-key \
--pkey /path/to/private/key.pem \
--path_to_pub_key /path/key.pub \
--service_base_name datalab-test \
--endpoint_id awstest \
--region xx-xxx \
--zone xxxx \
--cloud_provider aws \
--vpc_id xxxxxxx \
--subnet_id xxxxxxx \
--ssn_ui_host 0.0.0.0 \
--billing_enable true/false \
--billing_bucket xxxxxxx \
--report_path xxxxxxxxx \
--billing_aws_account_id xxxxxxxxx \
--billing_tag xxxxxxx \
--mongo_password xxxxxxxxxx
deactivate
```
The following AWS resources will be created:
- Endpoint EC2 instance
- Elastic IP address for Endpoint EC2 instance
- S3 bucket
- Security Group for Endpoint instance
- IAM Roles and Instance Profiles for Endpoint instance
- User private subnet. All further nodes (Notebooks, EMR clusters) will be provisioned in different subnet than SSN.
List of parameters for Endpoint deployment:
| Parameter | Description/Value |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| service\_base\_name | Any infrastructure value (should be unique if multiple SSN’s have been deployed before) |
| pkey | Path to private key |
| path\_to\_pub\_key | Path to public key |
| key\_name | Name of the uploaded SSH key file (without “.pem” extension) |
| endpoint\_id | ID of the endpoint |
| cloud\_provider | Name of the cloud provider, which is supported by DataLab (AWS) |
| access\_key\_id | AWS user access key |
| secret\_access\_key | AWS user secret access key |
| region | AWS region |
| vpc\_id | ID of the VPC (optional) |
| ssn\_ui\_host | IP address of SSN host on the cloud provider |
| subnet\_id | ID of the public subnet (optional) |
| billing\_enable | Enabling or disabling billing |
| billing\_bucket | The name of S3 bucket where billing reports will be placed |
| report\_path | The path to billing reports directory in S3 bucket. This parameter isn't required when billing reports are placed in the root of S3 bucket. |
| mongo\_password | Mongo database password |
In Azure (click to expand)
```
source /venv/bin/activate
/venv/bin/python3 infrastructure-provisioning/terraform/bin/datalab.py deploy azure endpoint \
--auth_file_path /path/to/auth.json
--key_name datalab-key \
--pkey /path/to/private/key.pem \
--path_to_pub_key /path/key.pub \
--service_base_name datalab-test \
--resource_group_name datalab-test-group \
--endpoint_id azuretest \
--region xx-xxx \
--zone xxxx \
--cloud_provider azure \
--vpc_id xxxxxxx \
--subnet_id xxxxxxx \
--ssn_ui_host 0.0.0.0 \
--billing_enable true/false \
--billing_bucket xxxxxxx \
--report_path xxxxxxxxx \
--billing_aws_account_id xxxxxxxxx \
--billing_tag xxxxxxx \
--mongo_password xxxxxxxxxx \
--offer_number xxxxxxxx \
--currency "USD" \
--locale "en-US" \
--region_info "US"
deactivate
```
The following Azure resources will be created:
- Endpoint virtual machine
- Static public IP address for Endpoint virtual machine
- Network interface for Endpoint node
- Security Group for user's Endpoint instance
- Endpoint's private subnet.
List of parameters for Endpoint deployment:
| Parameter | Description/Value |
|-----------------------|-----------------------------------------------------------------------------------------|
| service\_base\_name | Any infrastructure value (should be unique if multiple SSN’s have been deployed before) |
| pkey | Path to private key |
| path\_to\_pub\_key | Path to public key |
| key\_name | Name of the uploaded SSH key file (without “.pem” extension) |
| endpoint\_id | ID of the endpoint |
| cloud\_provider | Name of the cloud provider, which is supported by DataLab (Azure) |
| vpc\_id | Name of the Virtual Network (VN) (optional) |
| subnet\_id | Name of the Azure subnet (optional) |
| ssn\_ui\_host | IP address of SSN host on the cloud provider |
| resource\_group\_name | Resource group name (can be the same as service base name |
| region | Azure region |
| auth\_file\_path | Full path to auth json file |
| offer\_number | Azure offer id number |
| currency | Currency that is used for billing information(e.g. USD) |
| locale | Locale that is used for billing information(e.g. en-US) |
| region\_info | Region info that is used for billing information(e.g. US) |
| billing\_enable | Enabling or disabling billing |
| mongo\_password | Mongo database password |
In Google cloud (click to expand)
```
source /venv/bin/activate
/venv/bin/python3 infrastructure-provisioning/terraform/bin/datalab.py deploy gcp endpoint \
--gcp_project_id xxx-xxxx-xxxxxx \
--creds_file /path/to/auth.json \
--key_name datalab-key \
--pkey /path/to/private/key.pem \
--service_base_name datalab-test \
--path_to_pub_key /path/key.pub \
--endpoint_id gcptest \
--region xx-xxx \
--zone xxxx \
--cloud_provider gcp \
--vpc_id xxxxxxx \
--subnet_id xxxxxxx \
--ssn_ui_host 0.0.0.0 \
--mongo_password xxxxxxxxxx \
--billing_dataset_name xxxxxxxx \
--billing_enable true/false
deactivate
```
The following GCP resources will be created:
- Endpoint VM instance
- External static IP address for Endpoint VM instance
- Security Group for Endpoint instance
- Endpoint's private subnet.
List of parameters for Endpoint deployment:
| Parameter | Description/Value |
|------------------------|-----------------------------------------------------------------------------------------|
| service\_base\_name | Any infrastructure value (should be unique if multiple SSN’s have been deployed before) |
| pkey | Path to private key |
| path\_to\_pub\_key | Path to public key |
| key\_name | Name of the uploaded SSH key file (without “.pem” extension) |
| endpoint\_id | ID of the endpoint |
| cloud\_provider | Name of the cloud provider, which is supported by DataLab (GCP) |
| creds\_file | Full path to auth json file |
| gcp\_project\_id | ID of GCP project |
| region | GCP region |
| zone | GCP zone |
| vpc\_id | Name of the Virtual Network (VN) (optional) |
| subnet\_id | Name of the GCP subnet (optional) |
| billing\_dataset\_name | Name of GCP dataset (BigQuery service) |
| ssn\_ui\_host | IP address of SSN host on the cloud provider |
| billing\_enable | Enabling or disabling billing |
| mongo\_password | Mongo database password |
Terminating Endpoint
In Amazon (click to expand)
```
source /venv/bin/activate
/venv/bin/python3 infrastructure-provisioning/terraform/bin/datalab.py destroy aws endpoint \
--access_key_id access_key \
--secret_access_key secret_access_key \
--key_name datalab-key \
--pkey /path/to/private/key.pem \
--path_to_pub_key /path/key.pub \
--service_base_name datalab-test \
--endpoint_id awstest \
--region xx-xxx \
--zone xxxx \
--cloud_provider aws \
--vpc_id xxxxxxx \
--subnet_id xxxxxxx \
--ssn_ui_host 0.0.0.0 \
--billing_enable true/false \
--billing_bucket xxxxxxx \
--report_path xxxxxxxxx \
--billing_aws_account_id xxxxxxxxx \
--billing_tag xxxxxxx \
--mongo_password xxxxxxxxxx
deactivate
```
List of parameters for Endpoint termination:
| Parameter | Description/Value |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| service\_base\_name | Any infrastructure value (should be unique if multiple SSN’s have been deployed before) |
| pkey | Path to private key |
| path\_to\_pub\_key | Path to public key |
| key\_name | Name of the uploaded SSH key file (without “.pem” extension) |
| endpoint\_id | ID of the endpoint |
| cloud\_provider | Name of the cloud provider, which is supported by DataLab (AWS) |
| access\_key\_id | AWS user access key |
| secret\_access\_key | AWS user secret access key |
| region | AWS region |
| vpc\_id | ID of the VPC (optional) |
| ssn\_ui\_host | IP address of SSN host on the cloud provider |
| subnet\_id | ID of the public subnet (optional) |
| billing\_enable | Enabling or disabling billing |
| billing\_bucket | The name of S3 bucket where billing reports will be placed |
| report\_path | The path to billing reports directory in S3 bucket. This parameter isn't required when billing reports are placed in the root of S3 bucket. |
| mongo\_password | Mongo database password |
In Azure (click to expand)
```
source /venv/bin/activate
/venv/bin/python3 infrastructure-provisioning/terraform/bin/datalab.py destroy azure endpoint \
--auth_file_path /path/to/auth.json
--key_name datalab-key \
--pkey /path/to/private/key.pem \
--path_to_pub_key /path/key.pub \
--service_base_name datalab-test \
--resource_group_name datalab-test-group \
--endpoint_id azuretest \
--region xx-xxx \
--zone xxxx \
--cloud_provider azure \
--vpc_id xxxxxxx \
--subnet_id xxxxxxx \
--ssn_ui_host 0.0.0.0 \
--billing_enable true/false \
--billing_bucket xxxxxxx \
--report_path xxxxxxxxx \
--billing_aws_account_id xxxxxxxxx \
--billing_tag xxxxxxx \
--mongo_password xxxxxxxxxx \
--offer_number xxxxxxxx \
--currency "USD" \
--locale "en-US" \
--region_info "US"
deactivate
```
List of parameters for Endpoint termination:
| Parameter | Description/Value |
|-----------------------|-----------------------------------------------------------------------------------------|
| service\_base\_name | Any infrastructure value (should be unique if multiple SSN’s have been deployed before) |
| pkey | Path to private key |
| path\_to\_pub\_key | Path to public key |
| key\_name | Name of the uploaded SSH key file (without “.pem” extension) |
| endpoint\_id | ID of the endpoint |
| cloud\_provider | Name of the cloud provider, which is supported by DataLab (Azure) |
| vpc\_id | Name of the Virtual Network (VN) (optional) |
| subnet\_id | Name of the Azure subnet (optional) |
| ssn\_ui\_host | IP address of SSN host on the cloud provider |
| resource\_group\_name | Resource group name (can be the same as service base name |
| region | Azure region |
| auth\_file\_path | Full path to auth json file |
| offer\_number | Azure offer id number |
| currency | Currency that is used for billing information(e.g. USD) |
| locale | Locale that is used for billing information(e.g. en-US) |
| region\_info | Region info that is used for billing information(e.g. US) |
| billing\_enable | Enabling or disabling billing |
| mongo\_password | Mongo database password |
In Google cloud (click to expand)
```
source /venv/bin/activate
/venv/bin/python3 infrastructure-provisioning/terraform/bin/datalab.py destroy gcp endpoint \
--gcp_project_id xxx-xxxx-xxxxxx \
--creds_file /path/to/auth.json \
--key_name datalab-key \
--pkey /path/to/private/key.pem \
--service_base_name datalab-test \
--path_to_pub_key /path/key.pub \
--endpoint_id gcptest \
--region xx-xxx \
--zone xxxx \
--cloud_provider gcp \
--vpc_id xxxxxxx \
--subnet_id xxxxxxx \
--ssn_ui_host 0.0.0.0 \
--mongo_password xxxxxxxxxx \
--billing_dataset_name xxxxxxxx \
--billing_enable true/false
deactivate
```
List of parameters for Endpoint termination:
| Parameter | Description/Value |
|------------------------|-----------------------------------------------------------------------------------------|
| service\_base\_name | Any infrastructure value (should be unique if multiple SSN’s have been deployed before) |
| pkey | Path to private key |
| path\_to\_pub\_key | Path to public key |
| key\_name | Name of the uploaded SSH key file (without “.pem” extension) |
| endpoint\_id | ID of the endpoint |
| cloud\_provider | Name of the cloud provider, which is supported by DataLab (GCP) |
| creds\_file | Full path to auth json file |
| gcp\_project\_id | ID of GCP project |
| region | GCP region |
| zone | GCP zone |
| vpc\_id | Name of the Virtual Network (VN) (optional) |
| subnet\_id | Name of the GCP subnet (optional) |
| billing\_dataset\_name | Name of GCP dataset (BigQuery service) |
| ssn\_ui\_host | IP address of SSN host on the cloud provider |
| billing\_enable | Enabling or disabling billing |
| mongo\_password | Mongo database password |
After creating endpoint, you must set the endpoint in Datalab UI. To do this, go to the tab
"Resources" - "Endpoints". In the Name field, you should specify the name of the endpoint, in the URL,
specify the network address of the endpoint (taking as an example https://0.0.0.0:8084/). In the Account field, you need to
specify the "endpoint_id" value that was specified when creating the endpoint (for example, awstest, azuretest or gcptest),
in the Endpoint tag field, specify the endpoint tag (optional).
Edge Node
Gateway node (or an Edge node) is an instance(virtual machine) provisioned in a public subnet. It serves as an entry
point for accessing user’s personal analytical environment. It is created by an end-user, whose public key will be
uploaded there. Only via Edge node, DataLab user can access such application resources as notebook servers and dataengine
clusters. Also, Edge Node is used to setup SOCKS proxy to access notebook servers via Web UI and SSH. Elastic(Static)
IP address is assigned to an Edge Node.
Create
In order to create Edge node using DataLab Web UI – login and, click on the button “Upload” (Depending on authorization
provider that was chosen on deployment stage, user may be taken from LDAP or from
Azure AD (Oauth2)). Choose user’s SSH public key and after that click on the button
“Create”. Edge node will be deployed and corresponding instance (virtual machine) will be started.
In Amazon (click to expand)
The following AWS resources will be created:
- Edge EC2 instance
- Elastic IP address for Edge EC2 instance
- User's S3 bucket
- Security Group for user's Edge instance
- Security Group for all further user's Notebook instances
- Security Groups for all further user's master nodes of data engine cluster
- Security Groups for all further user's slave nodes of data engine cluster
- IAM Roles and Instance Profiles for user's Edge instance
- IAM Roles and Instance Profiles all further user's Notebook instances
- User private subnet. All further nodes (Notebooks, EMR clusters) will be provisioned in different subnet than SSN.
List of parameters for Edge node creation:
| Parameter | Description/Value |
|--------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | edge |
| conf\_os\_family | Name of the Linux distributive family, which is supported by DataLab (debian/redhat) |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Name of the user |
| aws\_vpc\_id | ID of AWS VPC where infrastructure is being deployed |
| aws\_region | AWS region where infrastructure was deployed |
| aws\_security\_groups\_ids | One or more id’s of the SSN instance security group |
| aws\_subnet\_id | ID of the AWS public subnet where Edge will be deployed |
| aws\_private\_subnet\_prefix | Prefix of the private subnet |
| conf\_tag\_resource\_id | The name of tag for billing reports |
| action | create |
In Azure (click to expand)
The following Azure resources will be created:
- Edge virtual machine
- Static public IP address for Edge virtual machine
- Network interface for Edge node
- Security Group for user's Edge instance
- Security Group for all further user's Notebook instances
- Security Groups for all further user's master nodes of data engine cluster
- Security Groups for all further user's slave nodes of data engine cluster
- User's private subnet. All further nodes (Notebooks, data engine clusters) will be provisioned in different subnet
than SSN.
- User's storage account and blob container
List of parameters for Edge node creation:
| Parameter | Description/Value |
|--------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | edge |
| conf\_os\_family | Name of the Linux distributive family, which is supported by DataLab (debian/redhat) |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Name of the user |
| azure\_resource\_group\_name | Name of the resource group where all DataLab resources are being provisioned |
| azure\_region | Azure region where infrastructure was deployed |
| azure\_vpc\_name | Name of Azure Virtual network where all infrastructure is being deployed |
| azure\_subnet\_name | Name of the Azure public subnet where Edge will be deployed |
| action | create |
In Google cloud (click to expand)
The following GCP resources will be created:
- Edge VM instance
- External static IP address for Edge VM instance
- Security Group for user's Edge instance
- Security Group for all further user's Notebook instances
- Security Groups for all further user's master nodes of data engine cluster
- Security Groups for all further user's slave nodes of data engine cluster
- User's private subnet. All further nodes (Notebooks, data engine clusters) will be provisioned in different subnet
than SSN.
- User's bucket
List of parameters for Edge node creation:
| Parameter | Description/Value |
|--------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | edge |
| conf\_os\_family | Name of the Linux distributive family, which is supported by DataLab (debian/redhat) |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Name of the user |
| gcp\_region | GCP region where infrastructure was deployed |
| gcp\_zone | GCP zone where infrastructure was deployed |
| gcp\_vpc\_name | Name of Azure Virtual network where all infrastructure is being deployed |
| gcp\_subnet\_name | Name of the Azure public subnet where Edge will be deployed |
| gcp\_project\_id | ID of GCP project |
| action | create |
Start/Stop
To start/stop Edge node, click on the button which looks like a cycle on the top right corner, then click on the button
which is located in “Action” field and in the drop-down menu click on the appropriate action.
In Amazon (click to expand)
List of parameters for Edge node starting/stopping:
| Parameter | Description/Value |
|---------------------------|--------------------------------------------------------------|
| conf\_resource | edge |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| edge\_user\_name | Name of the user |
| aws\_region | AWS region where infrastructure was deployed |
| action | start/stop |
In Azure (click to expand)
List of parameters for Edge node starting:
| Parameter | Description/Value |
|------------------------------|---------------------------------------------------------------------------|
| conf\_resource | edge |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| edge\_user\_name | Name of the user |
| azure\_resource\_group\_name | Name of the resource group where all DataLab resources are being provisioned |
| azure\_region | Azure region where infrastructure was deployed |
| action | start |
List of parameters for Edge node stopping:
| Parameter | Description/Value |
|------------------------------|---------------------------------------------------------------------------|
| conf\_resource | edge |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| edge\_user\_name | Name of the user |
| azure\_resource\_group\_name | Name of the resource group where all DataLab resources are being provisioned |
| action | stop |
In Google cloud (click to expand)
List of parameters for Edge node starting/stopping:
| Parameter | Description/Value |
|--------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | edge |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| edge\_user\_name | Name of the user |
| gcp\_region | GCP region where infrastructure was deployed |
| gcp\_zone | GCP zone where infrastructure was deployed |
| gcp\_project\_id | ID of GCP project |
| action | start/stop |
Notebook node
Notebook node is an instance (virtual machine), with preinstalled analytical software, needed dependencies and with
pre-configured kernels and interpreters. It is the main part of personal analytical environment, which is setup by a
data scientist. It can be Created, Stopped and Terminated. To support variety of analytical needs - Notebook node can
be provisioned on any of cloud supported instance shape for your particular region. From analytical software, which is
already pre-installed on a notebook node, end users can access (read/write) data stored on buckets/containers.
Create
To create Notebook node, click on the “Create new” button. Then, in drop-down menu choose template type
(jupyter/rstudio/zeppelin/tensor/etc.), enter notebook name and choose instance shape. After clicking the button
“Create”, notebook node will be deployed and started.
List of parameters for Notebook node creation:
In Amazon (click to expand)
| Parameter | Description/Value |
|-------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | notebook |
| conf\_os\_family | Name of the Linux distributive family, which is supported by DataLab (debian/redhat) |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| aws\_notebook\_instance\_type | Value of the Notebook EC2 instance shape |
| aws\_region | AWS region where infrastructure was deployed |
| aws\_security\_groups\_ids | ID of the SSN instance's security group |
| application | Type of the notebook template (jupyter/rstudio/zeppelin/tensor/deeplearning) |
| conf\_tag\_resource\_id | The name of tag for billing reports |
| git\_creds | User git credentials in JSON format |
| action | Create |
**Note:** For format of git_creds see "Manage git credentials" lower.
In Azure (click to expand)
| Parameter | Description/Value |
|---------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | notebook |
| conf\_os\_family | Name of the Linux distributive family, which is supported by DataLab (debian/redhat) |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| azure\_notebook\_instance\_size | Value of the Notebook virtual machine shape |
| azure\_region | Azure region where infrastructure was deployed |
| azure\_vpc\_name | NAme of Azure Virtual network where all infrastructure is being deployed |
| azure\_resource\_group\_name | Name of the resource group where all DataLab resources are being provisioned |
| application | Type of the notebook template (jupyter/rstudio/zeppelin/tensor/deeplearning) |
| git\_creds | User git credentials in JSON format |
| action | Create |
In Google cloud (click to expand)
| Parameter | Description/Value |
|-------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | notebook |
| conf\_os\_family | Name of the Linux distributive family, which is supported by DataLab (debian/redhat) |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| gcp\_vpc\_name | Name of Azure Virtual network where all infrastructure is being deployed |
| gcp\_project\_id | ID of GCP project |
| gcp\_notebook\_instance\_size | Value of the Notebook VM instance size |
| gcp\_region | GCP region where infrastructure was deployed |
| gcp\_zone | GCP zone where infrastructure was deployed |
| application | Type of the notebook template (jupyter/rstudio/zeppelin/tensor/deeplearning) |
| git\_creds | User git credentials in JSON format |
| action | Create |
Stop
In order to stop Notebook node, click on the “gear” button in Actions column. From the drop-down menu click on “Stop”
action.
List of parameters for Notebook node stopping:
In Amazon (click to expand)
| Parameter | Description/Value |
|---------------------------|--------------------------------------------------------------|
| conf\_resource | notebook |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| notebook\_instance\_name | Name of the Notebook instance to terminate |
| aws\_region | AWS region where infrastructure was deployed |
| action | Stop |
In Azure (click to expand)
| Parameter | Description/Value |
|---------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | notebook |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| notebook\_instance\_name | Name of the Notebook instance to terminate |
| azure\_resource\_group\_name | Name of the resource group where all DataLab resources are being provisioned |
| action | Stop |
In Google cloud (click to expand)
| Parameter | Description/Value |
|---------------------------|--------------------------------------------------------------|
| conf\_resource | notebook |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| notebook\_instance\_name | Name of the Notebook instance to terminate |
| gcp\_region | GCP region where infrastructure was deployed |
| gcp\_zone | GCP zone where infrastructure was deployed |
| gcp\_project\_id | ID of GCP project |
| action | Stop |
Start
In order to start Notebook node, click on the button, which looks like gear in “Action” field. Then in drop-down menu
choose “Start” action.
List of parameters for Notebook node start:
In Amazon (click to expand)
| Parameter | Description/Value |
|---------------------------|--------------------------------------------------------------|
| conf\_resource | notebook |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| notebook\_instance\_name | Name of the Notebook instance to terminate |
| aws\_region | AWS region where infrastructure was deployed |
| git\_creds | User git credentials in JSON format |
| action | start |
**Note:** For format of git_creds see "Manage git credentials" lower.
In Azure (click to expand)
| Parameter | Description/Value |
|---------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | notebook |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| notebook\_instance\_name | Name of the Notebook instance to terminate |
| azure\_resource\_group\_name | Name of the resource group where all DataLab resources are being provisioned |
| azure\_region | Azure region where infrastructure was deployed |
| git\_creds | User git credentials in JSON format |
| action | start |
In Google cloud (click to expand)
| Parameter | Description/Value |
|---------------------------|--------------------------------------------------------------|
| conf\_resource | notebook |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| notebook\_instance\_name | Name of the Notebook instance to terminate |
| gcp\_region | GCP region where infrastructure was deployed |
| gcp\_zone | GCP zone where infrastructure was deployed |
| gcp\_project\_id | ID of GCP project |
| git\_creds | User git credentials in JSON format |
| action | Stop |
Terminate
In order to terminate Notebook node, click on the button, which looks like gear in “Action” field. Then in drop-down
menu choose “Terminate” action.
List of parameters for Notebook node termination:
In Amazon (click to expand)
| Parameter | Description/Value |
|---------------------------|--------------------------------------------------------------|
| conf\_resource | notebook |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| notebook\_instance\_name | Name of the Notebook instance to terminate |
| aws\_region | AWS region where infrastructure was deployed |
| action | terminate |
**Note:** If terminate action is called, all connected data engine clusters will be removed.
In Azure (click to expand)
| Parameter | Description/Value |
|---------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | notebook |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| notebook\_instance\_name | Name of the Notebook instance to terminate |
| azure\_resource\_group\_name | Name of the resource group where all DataLab resources are being provisioned |
| action | terminate |
In Google cloud (click to expand)
| Parameter | Description/Value |
|---------------------------|--------------------------------------------------------------|
| conf\_resource | notebook |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| notebook\_instance\_name | Name of the Notebook instance to terminate |
| gcp\_region | GCP region where infrastructure was deployed |
| gcp\_zone | GCP zone where infrastructure was deployed |
| gcp\_project\_id | ID of GCP project |
| git\_creds | User git credentials in JSON format |
| action | Stop |
List/Install additional libraries
In order to list available libraries (OS/Python2/Python3/R/Others) on Notebook node, click on the button, which looks
like gear in “Action” field. Then in drop-down menu choose “Manage libraries” action.
In Amazon (click to expand)
List of parameters for Notebook node to **get list** of available libraries:
| Parameter | Description/Value |
|-------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | notebook |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| notebook\_instance\_name | Name of the Notebook instance to terminate |
| aws\_region | AWS region where infrastructure was deployed |
| application | Type of the notebook template (jupyter/rstudio/zeppelin/tensor/deeplearning) |
| action | lib_list |
**Note:** This operation will return a file with response **[edge_user_name]\_[application]\_[request_id]\_all\_pkgs.json**
**Example** of available libraries in response (type->library->version):
```
{
"os_pkg": {"htop": "2.0.1-1ubuntu1", "python-mysqldb": "1.3.7-1build2"},
"pip3": {"configparser": "N/A"},
"r_pkg": {"rmarkdown": "1.5"},
"others": {"Keras": "N/A"}
}
```
List of parameters for Notebook node to **install** additional libraries:
| Parameter | Description/Value |
|-------------------------------|--------------------------------------------------------------------------------------|
| conf\_resource | notebook |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| notebook\_instance\_name | Name of the Notebook instance to terminate |
| aws\_region | AWS region where infrastructure was deployed |
| application | Type of the notebook template (jupyter/rstudio/zeppelin/tensor/deeplearning) |
| libs | List of additional libraries in JSON format with type (os_pkg/pip3/r_pkg/others)|
| action | lib_install |
**Example** of additional_libs parameter:
```
{
...
"libs": [
{"group": "os_pkg", "name": "nmap"},
{"group": "os_pkg", "name": "htop"},
{"group": "pip3", "name": "configparser"},
{"group": "r_pkg", "name": "rmarkdown"},
{"group": "others", "name": "Keras"}
]
...
}
```
In Azure (click to expand)
List of parameters for Notebook node to **get list** of available libraries:
| Parameter | Description/Value |
|-------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | notebook |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| notebook\_instance\_name | Name of the Notebook instance to terminate |
| azure\_resource\_group\_name | Name of the resource group where all DataLab resources are being provisioned |
| application | Type of the notebook template (jupyter/rstudio/zeppelin/tensor/deeplearning) |
| action | lib_list |
List of parameters for Notebook node to **install** additional libraries:
| Parameter | Description/Value |
|-------------------------------|--------------------------------------------------------------------------------------|
| conf\_resource | notebook |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| notebook\_instance\_name | Name of the Notebook instance to terminate |
| azure\_resource\_group\_name | Name of the resource group where all DataLab resources are being provisioned |
| application | Type of the notebook template (jupyter/rstudio/zeppelin/tensor/deeplearning) |
| libs | List of additional libraries in JSON format with type (os_pkg/pip3/r_pkg/others)|
| action | lib_install |
In Google cloud (click to expand)
List of parameters for Notebook node to **get list** of available libraries:
| Parameter | Description/Value |
|-------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | notebook |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| notebook\_instance\_name | Name of the Notebook instance to terminate |
| application | Type of the notebook template (jupyter/rstudio/zeppelin/tensor/deeplearning) |
| gcp\_project\_id | ID of GCP project |
| gcp\_zone | GCP zone name |
| action | lib_list |
List of parameters for Notebook node to **install** additional libraries:
| Parameter | Description/Value |
|-------------------------------|--------------------------------------------------------------------------------------|
| conf\_resource | notebook |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| notebook\_instance\_name | Name of the Notebook instance to terminate |
| gcp\_project\_id | ID of GCP project |
| gcp\_zone | GCP zone name |
| application | Type of the notebook template (jupyter/rstudio/zeppelin/tensor/deeplearning) |
| libs | List of additional libraries in JSON format with type (os_pkg/pip3/r_pkg/others)|
| action | lib_install |
Manage git credentials
In order to manage git credentials on Notebook node, click on the button “Git credentials”. Then in menu you can add or
edit existing credentials.
In Amazon (click to expand)
List of parameters for Notebook node to **manage git credentials**:
| Parameter | Description/Value |
|-------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | notebook |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| notebook\_instance\_name | Name of the Notebook instance to terminate |
| aws\_region | AWS region where infrastructure was deployed |
| git\_creds | User git credentials in JSON format |
| action | git\_creds |
**Example** of git_creds parameter:
```
[{
"username": "Test User",
"email": "test@example.com",
"hostname": "github.com",
"login": "testlogin",
"password": "testpassword"
}, ...]
```
**Note:** Fields "username" and "email" are used for commits (displays Author in git log).
**Note:** Leave "hostname" field empty to apply login/password by default for all services.
**Note:** Also your can use "Personal access tokens" against passwords.
In Azure (click to expand)
| Parameter | Description/Value |
|-------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | notebook |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| notebook\_instance\_name | Name of the Notebook instance to terminate |
| azure\_resource\_group\_name | Name of the resource group where all DataLab resources are being provisioned |
| git\_creds | User git credentials in JSON format |
| action | git\_creds |
In Google cloud (click to expand)
| Parameter | Description/Value |
|-------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | notebook |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| gcp\_project\_id | ID of GCP project |
| gcp\_region | GCP region name |
| gcp\_zone | GCP zone name |
| notebook\_instance\_name | Name of the Notebook instance to terminate |
| git\_creds | User git credentials in JSON format |
| action | git\_creds |
Dataengine-service cluster
Dataengine-service is a cluster provided by cloud as a service (EMR on AWS) can be created if more computational
resources are needed for executing analytical algorithms and models, triggered from analytical tools. Jobs execution
will be scaled to a cluster mode increasing the performance and decreasing execution time.
Create
To create dataengine-service cluster click on the “gear” button in Actions column, and click on “Add computational
resources”. Specify dataengine-service version, fill in dataengine-service name, specify number of instances and
instance shapes. Click on the “Create” button.
List of parameters for dataengine-service cluster creation:
In Amazon (click to expand)
| Parameter | Description/Value |
|-----------------------------|--------------------------------------------------------------------------|
| conf\_resource | dataengine-service |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| emr\_timeout | Value of timeout for dataengine-service during build. |
| emr\_instance\_count | Amount of instance in dataengine-service cluster |
| emr\_master\_instance\_type | Value for dataengine-service EC2 master instance shape |
| emr\_slave\_instance\_type | Value for dataengine-service EC2 slave instances shapes |
| emr\_version | Available versions of dataengine-service (emr-5.2.0/emr-5.3.1/emr-5.6.0) |
| notebook\_instance\_name | Name of the Notebook dataengine-service will be linked to |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| aws\_region | AWS region where infrastructure was deployed |
| conf\_tag\_resource\_id | The name of tag for billing reports |
| action | create |
**Note:** If “Spot instances” is enabled, dataengine-service Slave nodes will be created as EC2 Spot instances.
In Google cloud (click to expand)
| Parameter | Description/Value |
|---------------------------------|--------------------------------------------------------------------------|
| conf\_resource | dataengine-service |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| notebook\_instance\_name | Name of the Notebook dataengine-service will be linked to |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| gcp\_subnet\_name | Name of subnet |
| dataproc\_version | Version of Dataproc |
| dataproc\_master\_count | Number of master nodes |
| dataproc\_slave\_count | Number of slave nodes |
| dataproc\_preemptible\_count | Number of preemptible nodes |
| dataproc\_master\_instance\_type| Size of master node |
| dataproc\_slave\_instance\_type | Size of slave node |
| gcp\_project\_id | ID of GCP project |
| gcp\_region | GCP region where infrastructure was deployed |
| gcp\_zone | GCP zone name |
| conf\_tag\_resource\_id | The name of tag for billing reports |
| action | create |
Terminate
In order to terminate dataengine-service cluster, click on “x” button which is located in “Computational resources” field.
List of parameters for dataengine-service cluster termination:
In Amazon (click to expand)
| Parameter | Description/Value |
|---------------------------|---------------------------------------------------------------------|
| conf\_resource | dataengine-service |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| emr\_cluster\_name | Name of the dataengine-service to terminate |
| notebook\_instance\_name | Name of the Notebook instance which dataengine-service is linked to |
| aws\_region | AWS region where infrastructure was deployed |
| action | Terminate |
In Google cloud (click to expand)
| Parameter | Description/Value |
|---------------------------|---------------------------------------------------------------------|
| conf\_resource | dataengine-service |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| notebook\_instance\_name | Name of the Notebook instance which dataengine-service is linked to |
| gcp\_project\_id | ID of GCP project |
| gcp\_region | GCP region where infrastructure was deployed |
| gcp\_zone | GCP zone name |
| dataproc\_cluster\_name | Dataproc cluster name |
| action | Terminate |
List/Install additional libraries
In order to list available libraries (OS/Python2/Python3/R/Others) on Dataengine-service, click on the button, which
looks like gear in “Action” field. Then in drop-down menu choose “Manage libraries” action.
In Amazon (click to expand)
List of parameters for Dataengine-service node to **get list** of available libraries:
| Parameter | Description/Value |
|-------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | dataengine-service |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| computational\_id | Name of Dataengine-service |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| aws\_region | AWS region where infrastructure was deployed |
| application | Type of the notebook template (jupyter/rstudio/zeppelin/tensor/deeplearning) |
| action | lib_list |
**Note:** This operation will return a file with response **[edge_user_name]\_[application]\_[request_id]\_all\_pkgs.json**
**Example** of available libraries in response (type->library->version):
```
{
"os_pkg": {"htop": "2.0.1-1ubuntu1", "python-mysqldb": "1.3.7-1build2"},
"pip3": {"configparser": "N/A"},
"r_pkg": {"rmarkdown": "1.5"},
"others": {"Keras": "N/A"}
}
```
List of parameters for Dataengine-service to **install** additional libraries:
| Parameter | Description/Value |
|-------------------------------|--------------------------------------------------------------------------------------|
| conf\_resource | dataengine-service |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| computational\_id | Name of Dataengine-service |
| aws\_region | AWS region where infrastructure was deployed |
| application | Type of the notebook template (jupyter/rstudio/zeppelin/tensor/deeplearning) |
| libs | List of additional libraries in JSON format with type (os_pkg/pip3/r_pkg/others)|
| action | lib_install |
**Example** of additional_libs parameter:
```
{
...
"libs": [
{"group": "os_pkg", "name": "nmap"},
{"group": "os_pkg", "name": "htop"},
{"group": "pip3", "name": "configparser"},
{"group": "r_pkg", "name": "rmarkdown"},
{"group": "others", "name": "Keras"}
]
...
}
```
In Google cloud (click to expand)
List of parameters for Dataengine-service node to **get list** of available libraries:
| Parameter | Description/Value |
|-------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | dataengine-service |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| application | Type of the notebook template (jupyter/rstudio/zeppelin/tensor/deeplearning) |
| gcp\_project\_id | ID of GCP project |
| gcp\_region | GCP region name |
| gcp\_zone | GCP zone name |
| action | lib_list |
List of parameters for Dataengine-service node to **install** additional libraries:
| Parameter | Description/Value |
|-------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | dataengine-service |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| application | Type of the notebook template (jupyter/rstudio/zeppelin/tensor/deeplearning) |
| gcp\_project\_id | ID of GCP project |
| gcp\_region | GCP region name |
| gcp\_zone | GCP zone name |
| action | lib_install |
Dataengine cluster
Dataengine is cluster based on Standalone Spark framework can be created if more computational resources are needed for
executing analytical algorithms, but without additional expenses for cloud provided service.
Create
To create Spark standalone cluster click on the “gear” button in Actions column, and click on “Add computational
resources”. Specify dataengine version, fill in dataengine name, specify number of instances and instance shapes.
Click on the “Create” button.
List of parameters for dataengine cluster creation:
In Amazon (click to expand)
| Parameter | Description/Value |
|--------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | dataengine |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| conf\_os\_family | Name of the Linux distributive family, which is supported by DataLab (Debian/RedHat) |
| notebook\_instance\_name | Name of the Notebook dataengine will be linked to |
| dataengine\_instance\_count | Number of nodes in cluster |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| aws\_region | Amazon region where all infrastructure was deployed |
| aws\_dataengine\_master\_size | Size of master node |
| aws\_dataengine\_slave\_size | Size of slave node |
| action | create |
In Azure (click to expand)
| Parameter | Description/Value |
|--------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | dataengine |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| conf\_os\_family | Name of the Linux distributive family, which is supported by DataLab (Debian/RedHat) |
| notebook\_instance\_name | Name of the Notebook dataengine will be linked to |
| dataengine\_instance\_count | Number of nodes in cluster |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| azure\_vpc\_name | Name of Azure Virtual network where all infrastructure is being deployed |
| azure\_region | Azure region where all infrastructure was deployed |
| azure\_dataengine\_master\_size| Size of master node |
| azure\_dataengine\_slave\_size | Size of slave node |
| azure\_resource\_group\_name | Name of the resource group where all DataLab resources are being provisioned |
| azure\_subnet\_name | Name of the Azure public subnet where Edge was deployed |
| action | create |
In Google cloud (click to expand)
| Parameter | Description/Value |
|------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | dataengine |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| conf\_os\_family | Name of the Linux distributive family, which is supported by DataLab (Debian/RedHat) |
| notebook\_instance\_name | Name of the Notebook dataengine will be linked to |
| gcp\_vpc\_name | GCP VPC name |
| gcp\_subnet\_name | GCP subnet name |
| dataengine\_instance\_count | Number of nodes in cluster |
| gcp\_dataengine\_master\_size| Size of master node |
| gcp\_dataengine\_slave\_size | Size of slave node |
| gcp\_project\_id | ID of GCP project |
| gcp\_region | GCP region where infrastructure was deployed |
| gcp\_zone | GCP zone name |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| action | create |
Terminate
In order to terminate dataengine cluster, click on “x” button which is located in “Computational resources” field.
List of parameters for dataengine cluster termination:
In Amazon (click to expand)
| Parameter | Description/Value |
|------------------------------|--------------------------------------------------------------------------|
| conf\_resource | dataengine |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| notebook\_instance\_name | Name of the Notebook instance which dataengine is linked to |
| computational\_name | Name of cluster |
| aws\_region | AWS region where infrastructure was deployed |
| action | Terminate |
In Azure (click to expand)
| Parameter | Description/Value |
|------------------------------|--------------------------------------------------------------------------|
| conf\_resource | dataengine |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| computational\_name | Name of cluster |
| notebook\_instance\_name | Name of the Notebook instance which dataengine is linked to |
| azure\_region | Azure region where infrastructure was deployed |
| azure\_resource\_group\_name | Name of the resource group where all DataLab resources are being provisioned|
| action | Terminate |
In Google cloud (click to expand)
| Parameter | Description/Value |
|------------------------------|--------------------------------------------------------------------------|
| conf\_resource | dataengine |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| notebook\_instance\_name | Name of the Notebook instance which dataengine is linked to |
| computational\_name | Name of cluster |
| gcp\_project\_id | ID of GCP project |
| gcp\_region | GCP region where infrastructure was deployed |
| gcp\_zone | GCP zone name |
| action | Terminate |
List/Install additional libraries
In order to list available libraries (OS/Python2/Python3/R/Others) on Dataengine, click on the button, which looks like
gear in “Action” field. Then in drop-down menu choose “Manage libraries” action.
In Amazon (click to expand)
List of parameters for Dataengine node to **get list** of available libraries:
| Parameter | Description/Value |
|-------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | dataengine |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| computational\_id | Name of cluster |
| application | Type of the notebook template (jupyter/rstudio/zeppelin/tensor/deeplearning) |
| action | lib_list |
**Note:** This operation will return a file with response **[edge_user_name]\_[application]\_[request_id]\_all\_pkgs.json**
**Example** of available libraries in response (type->library->version):
```
{
"os_pkg": {"htop": "2.0.1-1ubuntu1", "python-mysqldb": "1.3.7-1build2"},
"pip3": {"configparser": "N/A"},
"r_pkg": {"rmarkdown": "1.5"},
"others": {"Keras": "N/A"}
}
```
List of parameters for Dataengine node to **install** additional libraries:
| Parameter | Description/Value |
|-------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | dataengine |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| computational\_id | Name of cluster |
| application | Type of the notebook template (jupyter/rstudio/zeppelin/tensor/deeplearning) |
| action | lib_install |
**Example** of additional_libs parameter:
```
{
...
"libs": [
{"group": "os_pkg", "name": "nmap"},
{"group": "os_pkg", "name": "htop"},
{"group": "pip3", "name": "configparser"},
{"group": "r_pkg", "name": "rmarkdown"},
{"group": "others", "name": "Keras"}
]
...
}
```
In Azure (click to expand)
List of parameters for Dataengine node to **get list** of available libraries:
| Parameter | Description/Value |
|-------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | dataengine |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| azure\_resource\_group\_name | Name of the resource group where all DataLab resources are being provisioned |
| computational\_id | Name of cluster |
| application | Type of the notebook template (jupyter/rstudio/zeppelin/tensor/deeplearning) |
| action | lib_list |
List of parameters for Dataengine node to **install** additional libraries:
| Parameter | Description/Value |
|-------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | dataengine |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| azure\_resource\_group\_name | Name of the resource group where all DataLab resources are being provisioned |
| computational\_id | Name of cluster |
| application | Type of the notebook template (jupyter/rstudio/zeppelin/tensor/deeplearning) |
| action | lib_install |
In Google cloud (click to expand)
List of parameters for Dataengine node to **get list** of available libraries:
| Parameter | Description/Value |
|-------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | dataengine |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| application | Type of the notebook template (jupyter/rstudio/zeppelin/tensor/deeplearning) |
| gcp\_project\_id | ID of GCP project |
| gcp\_zone | GCP zone name |
| computational\_id | Name of cluster |
| action | lib_list |
List of parameters for Dataengine node to **install** additional libraries:
| Parameter | Description/Value |
|-------------------------------|-----------------------------------------------------------------------------------|
| conf\_resource | dataengine |
| conf\_service\_base\_name | Unique infrastructure value, specified during SSN deployment |
| conf\_key\_name | Name of the uploaded SSH key file (without ".pem") |
| edge\_user\_name | Value that previously was used when Edge being provisioned |
| application | Type of the notebook template (jupyter/rstudio/zeppelin/tensor/deeplearning) |
| gcp\_project\_id | ID of GCP project |
| gcp\_zone | GCP zone name |
| computational\_id | Name of cluster |
| action | lib_install |
Configuration files
DataLab configuration files are located on SSN node by following path:
- /opt/datalab/conf ssn.yml – basic configuration for all java services;
- provisioning.yml – Provisioning Service configuration file;for
- security.yml – Security Service configuration file;
- self-service.yml – Self-Service configuration file.
Starting/Stopping services
All DataLab services running as OS services and have next syntax for
starting and stopping:
sudo supervisorctl {start | stop | status} [all | provserv | secserv | ui]
- start – starting service or services;
- stop – stopping service or services;
- status – show status of service or services;
- all – execute command for all services, this option is default;
- provserv – execute command for Provisioning Service;
- secserv – execute command for Security Service;
- ui – execute command for Self-Service.
DataLab Web UI
DataLab self service is listening to the secure 8443 port. This port is used for secure local communication with
provisioning service.
There is also Nginx proxy server running on Self-Service node, which proxies remote connection to local 8443 port.
Nginx server is listening to both 80 and 443 ports by default. It means that you could access self-service Web UI using
non-secure connections (80 port) or secure (443 port).
Establishing connection using 443 port you should take into account that DataLab uses self-signed certificate from the box,
however you are free to switch Nginx to use your own domain-verified certificate.
To disable non-secure connection please do the following:
- uncomment at /etc/nginx/conf.d/nginx_proxy.conf file rule that rewrites all requests from 80 to 443 port;
- reload/restart Nginx web server.
To use your own certificate please do the following:
- upload your certificate and key to Self-Service node;
- specify at /etc/nginx/conf.d/nginx_proxy.conf file the correct path to your new ssl_certificate and ssl_certificate_key;
- reload/restart Nginx web server.
Billing report
AWS (click to expand)
Billing module is implemented as a separate jar file and can be running in the follow modes:
- part of Self-Service;
- separate system process;
- manual loading or use external scheduler;
The billing module is running as part of the Self-Service (if billing was switched ON before SSN deployment). For
details please refer to section [Self-Service Node](#Self_Service_Node). Otherwise, you should manually configure file
billing.yml. See the descriptions how to do this in the configuration file. Please also note, that you should also add
an entry in the Mongo database into collection:
```
{
"_id": "conf_tag_resource_id",
"Value": ""
}
```
After you have configured the billing, you can run it as a process of Self-Service. To do this, in the configuration
file self-service.yml set the property **BillingSchedulerEnabled** to **true** and restart the Self-Service:
```
sudo supervisorctl stop ui
sudo supervisorctl start ui
```
If you want to load report manually, or use external scheduler use following command:
```
java -jar /opt/datalab/webapp/lib/billing/billing-aws.x.y.jar --conf /opt/datalab/conf/billing.yml
or
java -cp /opt/datalab/webapp/lib/billing/billing-aws.x.y.jar com.epam.datalab.BillingTool --conf /opt/datalab/conf/billing.yml
```
If you want billing to work as a separate process from the Self-Service use following command:
```
java -cp /opt/datalab/webapp/lib/billing/billing-aws.x.y.jar com.epam.datalab.BillingScheduler --conf /opt/datalab/conf/billing.yml
```
Azure (click to expand)
Billing module is implemented as a separate jar file and can be running in the follow modes:
- part of Self-Service;
- separate system process;
If you want to start billing module as a separate process use the following command:
```
java -jar /opt/datalab/webapp/lib/billing/billing-azure.x.y.jar /opt/datalab/conf/billing.yml
```
Backup and Restore
All DataLab configuration files, keys, certificates, jars, database and logs can be saved to backup file.
Scripts for backup and restore is located in datalab_path/tmp/
. Default: /opt/datalab/tmp/
List of parameters for run backup:
Parameter |
Description/Value |
--datalab_path |
Path to DataLab. Default: /opt/datalab/ |
--configs |
Comma separated names of config files, like "security.yml", etc. Default: all |
--keys |
Comma separated names of keys, like "user_name.pub". Default: all |
--certs |
Comma separated names of SSL certificates and keys, like "atalab.crt", etc. Also available: skip. Default: all |
--jars |
Comma separated names of jar application, like "self-service" (without .jar), etc. Also available: all. Default: skip |
--db |
Mongo DB. Key without arguments. Default: disable |
--logs |
All logs (include docker). Key without arguments. Default: disable |
List of parameters for run restore:
Parameter |
Description/Value |
--datalab_path |
Path to DataLab. Default: /opt/datalab/ |
--configs |
Comma separated names of config files, like "security.yml", etc. Default: all |
--keys |
Comma separated names of keys, like "user_name.pub". Default: all |
--certs |
Comma separated names of SSL certificates and keys, like "datalab.crt", etc. Also available: skip. Default: all |
--jars |
Comma separated names of jar application, like "self-service" (without .jar), etc. Also available: all. Default: skip |
--db |
Mongo DB. Key without arguments. Default: disable |
--file |
Full or relative path to backup file or folder. Required field |
--force |
Force mode. Without any questions. Key without arguments. Default: disable |
Note: You can type -h
or --help
for usage details.
Note: Restore process required stopping services.
GitLab server
Own GitLab server can be deployed from SSN node with script, which located in:
datalab_path/tmp/gitlab
. Default: /opt/datalab/tmp/gitlab
All initial configuration parameters located in gitlab.ini
file.
Some of parameters are already setuped from SSN provisioning.
GitLab uses the same LDAP server as DataLab.
To deploy Gitlab server, set all needed parameters in gitlab.ini
and run script:
./gitlab_deploy.py --action [create/terminate]
Note: Terminate process uses node_name
to find instance.
Note: GitLab wouldn't be terminated with all environment termination process.
Troubleshooting
If the parameter datalab_path of configuration file datalab.ini wasn’t changed, the path to DataLab service would default to:
- /opt/datalab/ - main directory of DataLab service
- /var/opt/datalab/log/ or /var/log/datalab/ - path to log files
To check logs of Docker containers run the following commands:
docker ps -a – to get list of containers which were executed.
...
a85d0d3c27aa docker.datalab-dataengine:latest "/root/entrypoint...." 2 hours ago Exited (0) 2 hours ago infallible_gallileo
6bc2afeb888e docker.datalab-jupyter:latest "/root/entrypoint...." 2 hours ago Exited (0) 2 hours ago practical_cori
51b71c5d4aa3 docker.datalab-zeppelin:latest "/root/entrypoint...." 2 hours ago Exited (0) 2 hours ago determined_knuth
...
docker logs <container_id> – to get log for particular Docker container.
To change Docker images on existing environment, you can run script on SSN node that rebuilds docker images with the command:
docker-build all #to rebuild all images
or
docker-build <notebook_name> #to rebuild certain images
You can also rebuild images manually by executing the following steps:
- SSH to SSN instance
- go to /opt/datalab/sources/
- Modify needed files
[4]. [ONLY FOR AZURE] Copy service principal json file with credentials to base/azure_auth.json
- Rebuild proper Docker images, using one or several commands (depending on what files you’ve changed):
docker build --build-arg OS=<os_family> --file general/files/<cloud_provider>/base_Dockerfile -t docker.datalab-base .
docker build --build-arg OS=<os_family> --file general/files/<cloud_provider>/edge_Dockerfile -t docker.datalab-edge .
docker build --build-arg OS=<os_family> --file general/files/<cloud_provider>/jupyter_Dockerfile -t docker.datalab-jupyter .
docker build --build-arg OS=<os_family> --file general/files/<cloud_provider>/jupyterlab_Dockerfile -t docker.datalab-jupyterlab .
docker build --build-arg OS=<os_family> --file general/files/<cloud_provider>/rstudio_Dockerfile -t docker.datalab-rstudio .
docker build --build-arg OS=<os_family> --file general/files/<cloud_provider>/zeppelin_Dockerfile -t docker.datalab-zeppelin .
docker build --build-arg OS=<os_family> --file general/files/<cloud_provider>/tensor_Dockerfile -t docker.datalab-tensor .
docker build --build-arg OS=<os_family> --file general/files/<cloud_provider>/tensor-rstudio_Dockerfile -t docker.datalab-tensor-rstudio .
docker build --build-arg OS=<os_family> --file general/files/<cloud_provider>/deeplearning_Dockerfile -t docker.datalab-deeplearning .
docker build --build-arg OS=<os_family> --file general/files/<cloud_provider>/dataengine_Dockerfile -t docker.datalab-dataengine .
Development
DataLab services could be ran in development mode. This mode emulates real work an does not create any resources on cloud
provider environment.
Folder structure
datalab
├───infrastructure-provisioning
└───services
├───billing
├───common
├───provisioning-service
├───security-service
├───self-service
└───settings
- infrastructure-provisioning – code of infrastructure-provisioning module;
- services – back-end services source code;
- billing – billing module for AWS cloud provider only;
- common – reusable code for all services;
- provisioning-service – Provisioning Service;
- security-service – Security Service;
- self-service – Self-Service and UI;
- settings – global settings that are stored in mongo database in development mode;
Pre-requisites
In order to start development of Front-end Web UI part of DataLab - Git repository should be cloned and the following
packages should be installed:
- Git 1.7 or higher
- Python 2.7 with library Fabric v1.14.0
- Docker 1.12 - Infrastructure provisioning
Java back-end services
Java components description
Common
Common is a module, which wraps set of reusable code over services. Commonly reused functionality is as follows:
- Models
- REST client
- Mongo persistence DAO
- Security models and DAO
Self-Service
Self-Service provides REST based API’s. It tightly interacts with Provisioning Service and Security Service and actually
delegates most of user`s requests for execution.
API class name |
Supported actions |
Description |
BillingResource |
Get billing invoice Export billing invoice in CSV file |
Provides billing information. |
ComputationalResource |
Configuration limits Create Terminate |
Used for computational resources management. |
EdgeResource |
Start Stop Status |
Manage EDGE node. |
ExploratoryResource |
Create Status Start Stop Terminate |
Used for exploratory environment management. |
GitCredsResource |
Update credentials Get credentials |
Used for exploratory environment management. |
InfrastructureInfoResource |
Get info of environment Get status of environment |
Used for obtaining statuses and additional information about provisioned resources |
InfrastructureTemplatesResource |
Get computation resources templates Get exploratory environment templates |
Used for getting exploratory/computational templates |
KeyUploaderResource |
Check key Upload key Recover |
Used for Gateway/EDGE node public key upload and further storing of this information in Mongo DB. |
LibExploratoryResource |
Lib groups Lib list Lib search Lib install |
User’s authentication. |
SecurityResource |
Login Authorize Logout |
User’s authentication. |
UserSettingsResource |
Get settings Save settings |
User’s preferences. |
Some class names may have endings like Aws or Azure(e.g. ComputationalResourceAws, ComputationalResourceAzure, etc...).
It means that it's cloud specific class with a proper API
Provisioning Service
The Provisioning Service is key, REST based service for management of cloud specific or Docker based environment
resources like computational, exploratory,
edge, etc.
API class name |
Supported actions |
Description |
ComputationalResource |
Create Terminate |
Docker actions for computational resources management. |
DockerResource |
Get Docker image Run Docker image |
Requests and describes Docker images and templates. |
EdgeResource |
Create Start Stop |
Provides Docker actions for EDGE node management. |
ExploratoryResource |
Create Start Stop Terminate |
Provides Docker actions for working with exploratory environment management. |
GitExploratoryResource |
Update git greds |
Docker actions to provision git credentials to running notebooks |
InfrastructureResource |
Status |
Docker action for obtaining status of DataLab infrastructure instances. |
LibExploratoryResource |
Lib list Install lib |
Docker actions to install libraries on netobboks |
Some class names may have endings like Aws or Azure(e.g. ComputationalResourceAws, ComputationalResourceAzure, etc...).
It means that it's cloud specific class with a proper API
Security service
Security service is REST based service for user authentication against LDAP/LDAP + AWS/Azure OAuth2 depending on module
configuration and cloud provider.
LDAP only provides with authentication end point that allows to verify authenticity of users against LDAP instance.
If you use AWS cloud provider LDAP + AWS authentication could be useful as it allows to combine LDAP authentication and
verification if user has any role in AWS account
DataLab provides OAuth2(client credentials and authorization code flow) security authorization mechanism for Azure users.
This kind of authentication is required when you are going to use Data Lake. If Data Lake is not enabled you have two
options LDAP or OAuth2
If OAuth2 is in use security-service validates user's permissions to configured permission scope(resource in Azure).
If Data Lake is enabled default permission scope(can be configured manually after deploy DataLab) is Data Lake Store
account so only if user has any role in scope of Data Lake Store Account resource he/she will be allowed to log in
If Data Lake is disabled but Azure OAuth2 is in use default permission scope will be Resource Group where DataLab is
created and only users who have any roles in the resource group will be allowed to log in.
Front-end
Front-end components description
Web UI sources are part of Self-Service.
Sources are located in datalab/services/self-service/src/main/resources/webapp
Main pages |
Components and Services |
Login page |
LoginComponent applicationSecurityService handles http calls and stores authentication tokens on the client and attaches the token to authenticated calls; healthStatusService and appRoutingService check instances states and redirect to appropriate page. |
Home page (list of resources) |
HomeComponent nested several main components like ResourcesGrid for notebooks data rendering and filtering, using custom MultiSelectDropdown component; multiple modal dialogs components used for new instances creation, displaying detailed info and actions confirmation. |
Health Status page |
HealthStatusComponent HealthStatusGridComponent displays list of instances, their types, statutes, ID’s and uses healthStatusService for handling main actions. |
Help pages |
Static pages that contains information and instructions on how to access Notebook Server and generate SSH key pair. Includes only NavbarComponent. |
Error page |
Simple static page letting users know that opened page does not exist. Includes only NavbarComponent. |
Reporting page |
ReportingComponent ReportingGridComponent displays billing detailed info with built-in filtering and DateRangePicker component for custom range filtering; uses BillingReportService for handling main actions and exports report data to .csv file. |
How to setup local development environment
The development environment setup description is written with assumption that user already has installed Java8 (JDK),
Maven3 and set environment variables (JAVA_HOME, M2_HOME). The description will cover Mongo installation, Mongo
user creation, filling initial data into Mongo, Node.js installation
Install Mongo database
-
Download MongoDB from https://www.mongodb.com/download-center
-
Install database based on MongoDB instructions
-
Download and install MongoDB Database Tools https://www.mongodb.com/try/download/database-tools
-
Start DB server and create accounts
use admin
db.createUser(
{
user: "admin",
pwd: "<password>",
roles: [ { role: "dbAdminAnyDatabase", db: "admin" },
{ role: "userAdminAnyDatabase", db: "admin" },
{ role: "readWriteAnyDatabase", db: "admin" } ]
}
)
use <database_name>
db.createUser(
{
user: "admin",
pwd: "<password>",
roles: [ "dbAdmin", "userAdmin", "readWrite" ]
}
)
-
Load collections form file datalab/services/settings/(aws|azure)/mongo_settings.json
mongoimport -u admin -p <password> -d <database_name> -c settings mongo_settings.json
- Load collections form file datalab/infrastructure-provisioning/src/ssn/files/(aws|azure)/mongo_roles.json
mongoimport -u admin -p <password> -d <database_name> --jsonArray -c roles mongo_roles.json
If this command doesn't work for you, try to check https://docs.mongodb.com/v4.2/reference/program/mongoimport/
Or, use some UI client (f.e: MongoDB Compass )
Setting up environment options
- Set option CLOUD_TYPE to aws/azure, DEV_MODE to true, mongo database name and password in configuration file
datalab/infrastructure-provisioning/src/ssn/templates/ssn.yml
<#assign CLOUD_TYPE="aws">
...
<#assign DEV_MODE="true">
...
mongo:
database: <database_name>
password: <password>
- Add system environment variable DATALAB_CONF_DIR=<datalab_root_folder>/datalab/infrastructure-provisioning/src/ssn/templates or create two symlinks in datalab/services/provisioning-service and datalab/services/self-service folders for file datalab/infrastructure-provisioning/src/ssn/templates/ssn.yml.
Unix
ln -s ../../infrastructure-provisioning/src/ssn/templates/ssn.yml ssn.yml
Windows
mklink ssn.yml ..\\..\\infrastructure-provisioning\\src\\ssn\\templates\\ssn.yml
- For Unix system create two folders and grant permission for writing:
/var/opt/datalab/log/ssn
/opt/datalab/tmp/result
Install Node.js
- Download Node.js LTS from https://nodejs.org/en
- Install Node.js
- Make sure that the installation folder of Node.js has been added to the system environment variable PATH
- Install latest packages
npm install npm@latest -g
Build Web UI components
- Change folder to datalab/services/self-service/src/main/resources/webapp and install the dependencies from a package.json manifest
npm install
npm run build.prod
Prepare HTTPS prerequisites
To enable a SSL connection the web server should have a Digital Certificate.
To create a server certificate, follow these steps:
-
Create the keystore.
-
Export the certificate from the keystore.
-
Sign the certificate.
-
Import the certificate into a truststore: a repository of certificates used for verifying the certificates. A
truststore typically contains more than one certificate.
Please find below set of commands to create certificate, depending on OS.
Create Unix/Ubuntu server certificate
Pay attention that the last command has to be executed with administrative permissions. Use keytool bundled with JRE.
keytool -genkeypair -alias ssn -keyalg RSA -storepass KEYSTORE_PASSWORD -keypass KEYSTORE_PASSWORD -keystore ~/keys/ssn.keystore.jks -keysize 2048 -dname "CN=localhost"
keytool -exportcert -alias ssn -storepass KEYSTORE_PASSWORD -file ~/keys/ssn.crt -keystore ~/keys/ssn.keystore.jks
sudo keytool -importcert -trustcacerts -alias ssn -file ~/keys/ssn.crt -noprompt -storepass changeit -keystore ${JRE_HOME}/lib/security/cacerts
Create Windows server certificate
Pay attention that the last command has to be executed with administrative permissions.
To achieve this the command line (cmd) should be ran with administrative permissions. Path to :\home\%USERNAME%\keys should exist.
"%JRE_HOME%\bin\keytool" -genkeypair -alias ssn -keyalg RSA -storepass KEYSTORE_PASSWORD -keypass KEYSTORE_PASSWORD -keystore <DRIVE_LETTER>:\home\%USERNAME%\keys\ssn.keystore.jks -keysize 2048 -dname "CN=localhost"
"%JRE_HOME%\bin\keytool" -exportcert -alias ssn -storepass KEYSTORE_PASSWORD -file <DRIVE_LETTER>:\home\%USERNAME%\keys\ssn.crt -keystore <DRIVE_LETTER>:\home\%USERNAME%\keys\ssn.keystore.jks
"%JRE_HOME%\bin\keytool" -importcert -trustcacerts -alias ssn -file <DRIVE_LETTER>:\home\%USERNAME%\keys\ssn.crt -noprompt -storepass changeit -keystore "%JRE_HOME%\lib\security\cacerts"
Useful command
"%JRE_HOME%\bin\keytool" -list -alias ssn -storepass changeit -keystore "%JRE_HOME%\lib\security\cacerts"
"%JRE_HOME%\bin\keytool" -delete -alias ssn -storepass changeit -keystore "%JRE_HOME%\lib\security\cacerts"
Where the <DRIVE_LETTER>
must be the drive letter where you run the DataLab.
Set up config files
ssn.yml
Open infrastructure-provisioning/src/ssn/templates/ssn.yml
- (23) KEYS_DIR -> path to keys dir with backslash
- (30) CLOUD_TYPE -> CLOUD_PROVIDER to aws
- (34) DEV_MODE -> false to true
-
(40-42) change user, pass, db to created in prev step
self-service.yml
Open services/self-service/self-service.yml
- (170) keycloakConfiguration
provisioning.yml
Open services/provisioning-service/provisioning.yml
How to run locally
There is a possibility to run Self-Service and Provisioning Service locally. All requests from Provisioning Service to
Docker are mocked and instance creation status will be persisted to Mongo (only without real impact on Docker and AWS).
Security Service can`t be running on local machine because of local LDAP mocking complexity.
Both services, Self-Service and Provisioning Service are dependent on datalab/provisioning-infrastructure/ssn/templates/ssn.yml
configuration file. Both services have main functions as entry point, SelfServiceApplication for Self-Service and ProvisioningServiceApplication for Provisioning Service. Services could be started by running main methods of these classes. Both main functions require two arguments:
- Run mode (“server”)
- Configuration file name (“self-service.yml” or “provisioning.yml” depending on the service). Both files are located
in root service directory. These configuration files contain service settings and are ready to use.
The services start up order does matter. Since Self-Service depends on Provisioning Service, the last should be started
first and Self-Service afterwards. Services could be started from local IDEA (Eclipse or Intellij Idea) “Run”
functionality of toolbox.
Run application flow is following:
User: test
Password: <any>
Infrastructure provisioning
DevOps components overview
The following list shows common structure of scripts for deploying DataLab
Folder structure
datalab
└───infrastructure-provisioning
└───src
├───base
├───dataengine
├───dataengine-service
├───deeplearning
├───edge
├───general
├───jupyter
├───jupyterlab
├───project
├───rstudio
├───ssn
├───superset
├───tensor
├───tensor-rstudio
└───zeppelin
Each directory except general contains Python scripts, Docker files, templates, files for appropriate Docker image.
- base – Main Docker image. It is a common/base image for other ones.
- edge – Docker image for Edge node.
- dataengine – Docker image for dataengine cluster.
- dataengine-service – Docker image for dataengine-service cluster.
- general – OS and CLOUD dependent common source.
- ssn – Docker image for Self-Service node (SSN).
- jupyter/rstudio/zeppelin/tensor/deeplearning – Docker images for Notebook nodes.
All Python scripts, Docker files and other files, which are located in these directories, are OS and CLOUD independent.
OS, CLOUD dependent and common for few templates scripts, functions, files are located in general directory.
general
├───api – all available API
├───conf – DataLab configuration
├───files – OS/Cloud dependent files
├───lib – OS/Cloud dependent functions
├───scripts – OS/Cloud dependent Python scripts
└───templates – OS/Cloud dependent templates
These directories may contain differentiation by operating system (Debian/RedHat) or cloud provider (AWS).
Directories of templates (SSN, Edge etc.) contain only scripts, which are OS and CLOUD independent.
If script/function is OS or CLOUD dependent, it should be located in appropriate directory/library in general folder.
The following table describes mostly used scripts:
Script name/Path |
Description |
Dockerfile |
Used for building Docker images and represents which Python scripts, templates and other files are needed. Required for each template. |
base/entrypoint.py |
This file is executed by Docker. It is responsible for setting environment variables, which are passed from Docker and for executing appropriate actions (script in general/api/). |
base/scripts/*.py |
Scripts, which are OS independent and are used in each template. |
general/api/*.py |
API scripts, which execute appropriate function from fabfile.py. |
template_name/fabfile.py |
Is the main file for template and contains all functions, which can be used as template actions. |
template_name/scripts/*.py |
Python scripts, which are used for template. They are OS and CLOUD independent. |
general/lib/aws/*.py |
Contains all functions related to AWS. |
general/lib/os/ |
This directory is divided by type of OS. All OS dependent functions are located here. |
general/lib/os/fab.py |
Contains OS independent functions used for multiple templates. |
general/scripts/ |
Directory is divided by type of Cloud provider and OS. |
general/scripts/aws/*.py |
Scripts, which are executed from fabfiles and AWS-specific. The first part of file name defines to which template this script is related to. For example: common_*.py – can be executed from more than one template. ssn_*.py – are used for SSN template. edge_*.py – are used for Edge template. |
general/scripts/os/*.py |
Scripts, which are OS independent and can be executed from more than one template. |
Docker actions overview
Available Docker images and their actions:
Docker image |
Actions |
ssn |
create, terminate |
edge |
create, terminate, status, start, stop, recreate |
jupyter/rstudio/zeppelin/tensor/deeplearning |
create, terminate, start, stop, configure, list_libs, install_libs, git_creds |
dataengine/dataengine-service |
create, terminate |
Docker and python execution workflow on example of SSN node
- Docker command for building images docker.datalab-base and docker.datalab-ssn:
sudo docker build --build-arg OS=debian --file general/files/aws/base_Dockerfile -t docker.datalab-base . ;
sudo docker build --build-arg OS=debian --file general/files/aws/ssn_Dockerfile -t docker.datalab-ssn . ;
Example of SSN Docker file:
FROM docker.datalab-base:latest
ARG OS
COPY ssn/ /root/
COPY general/scripts/aws/ssn_* /root/scripts/
COPY general/lib/os/${OS}/ssn_lib.py /usr/lib/python3.8/datalab/ssn_lib.py
COPY general/files/aws/ssn_policy.json /root/files/
COPY general/templates/aws/jenkins_jobs /root/templates/jenkins_jobs
RUN chmod a+x /root/fabfile.py; \
chmod a+x /root/scripts/*
RUN mkdir /project_tree
COPY . /project_tree
Using this Docker file, all required scripts and files will be copied to Docker container.
- Docker command for building SSN:
docker run -i -v /root/KEYNAME.pem:/root/keys/KEYNAME.pem –v /web_app:/root/web_app -e "conf_os_family=debian" -e "conf_cloud_provider=aws" -e "conf_resource=ssn" -e "aws_ssn_instance_size=t2.medium" -e "aws_region=us-west-2" -e "aws_vpc_id=vpc-111111" -e "aws_subnet_id=subnet-111111" -e "aws_security_groups_ids=sg-11111,sg-22222,sg-33333" -e "conf_key_name=KEYNAME" -e "conf_service_base_name=datalab_test" -e "aws_access_key=Access_Key_ID" -e "aws_secret_access_key=Secret_Access_Key" -e "conf_tag_resource_id=datalab" docker.datalab-ssn --action create ;
- Docker executes *entrypoint.py* script with action *create*. *Entrypoint.py* will set environment variables,
which were provided from Docker and execute *general/api/create.py* script:
elif args.action == 'create':
with hide('running'):
local("/bin/create.py")
- *general/api/create.py* will execute Fabric command with *run* action:
try:
local('cd /root; fab run')
- Function *run()* in file *ssn/fabfile.py* will be executed. It will run two scripts *general/scripts/aws/ssn\_prepare.py*
and *general/scripts/aws/ssn\_configure.py*:
try:
local("~/scripts/{}.py".format('ssn_prepare'))
except Exception as err:
traceback.print_exc()
append_result("Failed preparing SSN node. Exception: " + str(err))
sys.exit(1)
try:
local("~/scripts/{}.py".format('ssn_configure'))
except Exception as err:
traceback.print_exc()
append_result("Failed configuring SSN node. Exception: " + str(err))
sys.exit(1)
- The scripts *general/scripts/<cloud_provider>/ssn\_prepare.py* an *general/scripts/<cloud_provider>/ssn\_configure.py*
will execute other Python scripts/functions for:
1. *ssn\_prepate.py:*
1. Creating configuration file (for AWS)
2. Creating Cloud resources.
2. *ssn\_configure.py:*
1. Installing prerequisites
2. Installing required packages
3. Configuring Docker
4. Configuring DataLab Web UI
- If all scripts/function are executed successfully, Docker container will stop and SSN node will be created.
#### Example of Docker commands
SSN:
docker run -i -v .pem:/root/keys/.pem -e "region=" -e "conf_service_base_name=" -e “conf_resource=ssn" -e "aws_access_key=" -e "aws_secret_access_key=" docker.datalab-ssn --action
All parameters are listed in section "Self-ServiceNode" chapter.
Other images:
docker run -i -v /home//keys:/root/keys -v /opt/datalab/tmp/result:/response -v /var/opt/datalab/log/:/logs/ -e –e docker.datalab- --action
#### How to add a new template
First of all, a new directory should be created in *infrastructure-provisioning/src/*.
For example: *infrastructure-provisioning/src/my-tool/*
The following scripts/directories are required to be created in the template directory:
my-tool
├───scripts
└───fabfile.py
fabfile.py – the main script, which contains main functions for this template such as run, stop, terminate, etc.
Here is example of *run*() function for Jupyter Notebook node:
Path: *infrastructure-provisioning/src/jupyter/fabfile.py*
def run():
local_logfilename = "{}{}_{}.log".format(os.environ['conf_resource'], os.environ['edge_user_name'], os.environ['request_id'])
local_log_filepath = "/logs/" + os.environ['conf_resource'] + "/" + local_log_filename
logging.basicConfig(format='%(levelname)-8s [%(asctime)s] %(message)s',
level=logging.DEBUG,
filename=local_log_filepath)
notebook_config = dict()
notebook_config['uuid'] = str(uuid.uuid4())[:5]
try:
params = "--uuid {}".format(notebook_config['uuid'])
local("~/scripts/{}.py {}".format('common_prepare_notebook', params))
except Exception as err:
traceback.print_exc()
append_result("Failed preparing Notebook node.", str(err))
sys.exit(1)
try:
params = "--uuid {}".format(notebook_config['uuid'])
local("~/scripts/{}.py {}".format('jupyter_configure', params))
except Exception as err:
traceback.print_exc()
append_result("Failed configuring Notebook node.", str(err))
sys.exit(1)
This function describes process of creating Jupyter node. It is divided into two parts – prepare and configure. Prepare
part is common for all notebook templates and responsible for creating of necessary cloud resources, such as EC2
instances, etc. Configure part describes how the appropriate services will be installed.
To configure Jupyter node, the script *jupyter\_configure.py* is executed. This script describes steps for configuring
Jupyter node. In each step, the appropriate Python script is executed.
For example:
Path: *infrastructure-provisioning/src/general/scripts/aws/jupyter\_configure.py*
try:
logging.info('[CONFIGURE JUPYTER NOTEBOOK INSTANCE]')
print('[CONFIGURE JUPYTER NOTEBOOK INSTANCE]')
params = "--hostname {} --keyfile {} --region {} --spark_version {} --hadoop_version {} --os_user {} --scala_version {}".\
format(instance_hostname, keyfile_name, os.environ['aws_region'], os.environ['notebook_spark_version'],
os.environ['notebook_hadoop_version'], os.environ['conf_os_user'],
os.environ['notebook_scala_version'])
try:
local("~/scripts/{}.py {}".format('configure_jupyter_node', params))
In this step, the script *infrastructure-provisioning/src/jupyter/scripts/configure\_jupyter\_node.py* will be executed.
Example of script *infrastructure-provisioning/src/jupyter/scripts/configure\_jupyter\_node.py:*
if name == "main":
print("Configure connections")
env['connection_attempts'] = 100
env.key_filename = [args.keyfile]
env.host_string = args.os_user + '@' + args.hostname
print("Configuring notebook server.")
try:
if not exists(conn,'/home/' + args.os_user + '/.ensure_dir'):
conn.sudo('mkdir /home/' + args.os_user + '/.ensure_dir')
except:
sys.exit(1)
print("Mount additional volume")
prepare_disk(args.os_user)
print("Install Java")
ensure_jre_jdk(args.os_user)
This script call functions for configuring Jupyter node. If this function is OS dependent, it will be placed in
*infrastructure-provisioning/src/general/lib/\<OS\_family\>/debian/notebook\_lib.py*
All functions in template directory (e.g. *infrastructure-provisioning/src/my-tool/*) should be OS and cloud independent.
All OS or cloud dependent functions should be placed in *infrastructure-provisioning/src/general/lib/* directory.
The following steps are required for each Notebook node:
- Configure proxy on Notebook instance – the script *infrastructure-provisioning/src/general/scripts/os/notebook\_configure\_proxy.py*
- Installing user’s key – the script *infrastructure-provisioning/src/base/scripts/install\_user\_key.py*
Other scripts, responsible for configuring Jupyter node are placed in *infrastructure-provisioning/src/jupyter/scripts/*
- scripts directory – contains all required configuration scripts.
- *infrastructure-provisioning/src/general/files/<cloud_provider>/my-tool_Dockerfile* – used for building template
Docker image and describes which files, scripts, templates are required and will be copied to template Docker image.
- *infrastructure-provisioning/src/general/files/<cloud_provider>/my-tool_descriptsion.json* – JSON file for DataLab Web
UI. In this file you can specify:
* exploratory\_environment\_shapes – list of EC2 shapes
* exploratory\_environment\_versions – description of template
Example of this file for Jupyter node for AWS cloud:
{
"exploratory_environment_shapes" :
{
"For testing" : [
{"Size": "S", "Description": "Standard_DS1_v2", "Type": "Standard_DS1_v2","Ram": "3.5 GB","Cpu": "1", "Spot": "true", "SpotPctPrice": "70"}
],
"Memory optimized" : [
{"Size": "S", "Description": "Standard_E4s_v3", "Type": "Standard_E4s_v3","Ram": "32 GB","Cpu": "4"},
{"Size": "M", "Description": "Standard_E16s_v3", "Type": "Standard_E16s_v3","Ram": "128 GB","Cpu": "16"},
{"Size": "L", "Description": "Standard_E32s_v3", "Type": "Standard_E32s_v3","Ram": "256 GB","Cpu": "32"}
],
"Compute optimized": [
{"Size": "S", "Description": "Standard_F2s", "Type": "Standard_F2s","Ram": "4 GB","Cpu": "2"},
{"Size": "M", "Description": "Standard_F8s", "Type": "Standard_F8s","Ram": "16.0 GB","Cpu": "8"},
{"Size": "L", "Description": "Standard_F16s", "Type": "Standard_F16s","Ram": "32.0 GB","Cpu": "16"}
]
},
"exploratory_environment_versions" :
[
{
"template_name": "Jupyter notebook 5.7.4",
"description": "Base image with jupyter node creation routines",
"environment_type": "exploratory",
"version": "jupyter_notebook-5.7.4",
"vendor": "Azure"
}
]
}
Additionally, following directories could be created:
- templates – directory for new templates;
- files – directory for files used by newly added templates only;
All Docker images are being built while creating SSN node. To add newly created template, add it to the list of images
in the following script:
Path: *infrastructure-provisioning/src/general/scripts/aws/ssn\_configure.py*
try:
logging.info('[CONFIGURING DOCKER AT SSN INSTANCE]')
print('[CONFIGURING DOCKER AT SSN INSTANCE]')
additional_config = [{"name": "base", "tag": "latest"},
{"name": "edge", "tag": "latest"},
{"name": "jupyter", "tag": "latest"},
{"name": "rstudio", "tag": "latest"},
{"name": "zeppelin", "tag": "latest"},
{"name": "tensor", "tag": "latest"},
{"name": "emr", "tag": "latest"}]
For example:
...
{"name": "my-tool", "tag": "latest"},
...
## LDAP Authentication <a name="LDAP_Authentication"></a>
### Unified logging and group management
There are a few popular LDAP distributions on the market like Active Directory, Open LDap. That’s why some differences
in configuration appear.
Also depending on customization, there might be differences in attributes configuration. For example the
DN(distinguished name) may contain different attributes:
- **DN=CN=Name Surname,OU=groups,OU=EPAM,DC=Company,DC=Cloud**
- **DN=UID=UID#53,OU=groups,OU=Company,DC=Company,DC=Cloud**
**CN** vs **UID**.
The relation between users and groups also varies from vendor to vendor.
For example, in Open LDAP the group object may contain set (from 0 to many) attributes **"memberuid"** with values
equal to user`s attribute **“uid”**.
However, in Active Directory the mappings are done based on other attributes.
On a group size there is attribute **"member"** (from 0 to many values) and its value is user`s **DN** (distinguished name).
To fit the unified way of LDAP usage, we introduced configuration file with set of properties and customized scripts
(python and JavaScript based).
On backend side, all valuable attributes are further collected and passed to these scripts.
To apply some customization it is required to update a few properties in **security.yml** and customize the scripts.
### Properties overview
There are just a few properties based in which the customization could be done:
- **ldapBindTemplate: uid=%s,ou=People,dc=example,dc=com**
- **ldapBindAttribute: uid**
- **ldapSearchAttribute: uid**
Where the:
- **ldapBindTemplate** is a user`s DN template which should be filed with custom value. Here the template could be
changed: uid=%s,ou=People,dc=example,dc=com -> cn=%s,ou=People,dc=example,dc=com.
- **ldapBindAttribute** - this is a major attribute, on which the DN is based on. Usually it is any of: uid or cn, or email.
- **ldapSearchAttribute** - another attribute, based on which users will be looked up in LDAP.
Additional parameters that are populated during deployment and may be changed in future are:
- **ldapConnectionConfig.name: ldap user name**
- **ldapConnectionConfig.ldapHost: ldap host**
- **ldapConnectionConfig.ldapPort: ldap port**
- **ldapConnectionConfig.credentials: ldap credentials**
### Scripts overview
There are 3 scripts in security.yml:
- **userLookUp** (python based) - responsible for user lookup in LDap and returns additional user`s attributes;
- **userInfo** (python based) - enriches user with additional data;
- **groupInfo** (javascript based) – responsible for mapping between users and groups;
### Script structure
The scripts above were created to flexibly manage user`s security configuration. They all are part of **security.yml**
configuration. All scripts have following structure:
- **name**
- **cache**
- **expirationTimeMsec**
- **scope**
- **attributes**
- **timeLimit**
- **base**
- **filter**
- **searchResultProcessor:**
- **language**
- **code**
Major properties are:
- **attributes** - list of attributes that will be retrieved from LDAP (-name, -cn, -uid, -member, etc);
- **filter** - the filter, based on which the object will be retrieved from LDAP;
- **searchResultProcessor** - optional. If only LDAP object attributes retrieving is required, this property should
be empty. For example, “userLookup” script only retrieves list of "attributes". Otherwise, code customization (like user enrichment, user to groups matching, etc.) should be added into sub-properties below:
- **language** - the script language - "python" or "JavaScript"
- **code** - the script code.
### "userLookUp" script
Configuration properties:
- **ldapBindTemplate: 'cn=%s,ou=users,ou=alxn,dc=alexion,dc=cloud'**
- **ldapBindAttribute: cn**
- **ldapSearchAttribute: mail**
Script code:
name: userLookUp
cache: true
expirationTimeMsec: 600000
scope: SUBTREE
attributes:
- cn
- gidNumber
- mail
- memberOf
timeLimit: 0
base: ou=users,ou=alxn,dc=alexion,dc=cloud
filter: "(&(objectCategory=person)(objectClass=user)(mail=%mail%))"
In the example above, the user login passed from GUI is a mail (**ldapSearchAttribute: mail**) and based on the filer
(**filter: "(&(objectCategory=person)(objectClass=user)(mail=%mail%))")** so, the service would search user by its **“mail”**.
If corresponding users are found - the script will return additional user`s attributes:
- cn
- gidNumber
- mail
- memberOf
User`s authentication into LDAP would be done for DN with following template **ldapBindTemplate: 'cn=%s,ou=users,ou=alxn,
dc=alexion,dc=cloud'**, where CN is attribute retrieved by **“userLookUp”** script.
## Azure OAuth2 Authentication <a name="Azure_OAuth2_Authentication"></a>
DataLab supports OAuth2 authentication that is configured automatically in Security Service and Self Service after DataLab deployment.
Please see explanation details about configuration parameters for Self Service and Security Service below.
DataLab supports client credentials(username + password) and authorization code flow for authentication.
### Azure OAuth2 Self Service configuration
azureLoginConfiguration:
useLdap: false
tenant: xxxx-xxxx-xxxx-xxxx
authority: https://login.microsoftonline.com/
clientId: xxxx-xxxx-xxxx-xxxx
redirectUrl: https://datalab.azure.cloudapp.azure.com/
responseMode: query
prompt: consent
silent: true
loginPage: https://datalab.azure.cloudapp.azure.com/
maxSessionDurabilityMilliseconds: 288000000
where:
- **useLdap** - defines if LDAP authentication is enabled(true/false). If false Azure OAuth2 takes place with
configuration properties below
- **tenant** - tenant id of your company
- **authority** - Microsoft login endpoint
- **clientId** - id of the application that users log in through
- **redirectUrl** - redirect URL to DataLab application after try to login to Azure using OAuth2
- **responseMode** - defines how Azure sends authorization code or error information to DataLab during log in procedure
- **prompt** - defines kind of prompt during Oauth2 login
- **silent** - defines if DataLab tries to log in user without interaction(true/false), if false DataLab tries to login user
with configured prompt
- **loginPage** - start page of DataLab application
- **maxSessionDurabilityMilliseconds** - max user session durability. user will be asked to login after this period
of time and when he/she creates ot starts notebook/cluster. This operation is needed to update refresh_token that is used by notebooks to access Data Lake Store
To get more info about *responseMode*, *prompt* parameters please visit
[Authorize access to web applications using OAuth 2.0 and Azure Active Directory](https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-protocols-oauth-code)
### Azure OAuth2 Security Service configuration
azureLoginConfiguration:
useLdap: false
tenant: xxxx-xxxx-xxxx-xxxx
authority: https://login.microsoftonline.com/
clientId: xxxx-xxxx-xxxx-xxxx
redirectUrl: https://datalab.azure.cloudapp.azure.com/
validatePermissionScope: true
permissionScope: subscriptions/xxxx-xxxx-xxxx-xxxx/resourceGroups/xxxx-xxxx/providers/Microsoft.DataLakeStore/accounts/xxxx/providers/Microsoft.Authorization/
managementApiAuthFile: /datalab/keys/azure_authentication.json
where:
- **useLdap** - defines if LDAP authentication is enabled(true/false). If false Azure OAuth2 takes place with
configuration properties below
- **tenant** - tenant id of your company
- **authority** - Microsoft login endpoint
- **clientId** - id of the application that users log in through
- **redirectUrl** - redirect URL to DataLab application after try to login to Azure using OAuth2
- **validatePermissionScope** - defines(true/false) if user's permissions should be validated to resource that is
provided in permissionScope parameter. User will be logged in onlu in case he/she has any role in resource IAM
described with permissionScope parameter
- **permissionScope** - describes Azure resource where user should have any role to pass authentication. If user has no
role in resource IAM he/she will not be logged in
- **managementApiAuthFile** - authentication file that is used to query Microsoft Graph API to check user roles in
resource described in permissionScope