aspuru-guzik-group / olympus

Olympus: a benchmarking framework for noisy optimization and experiment planning
https://aspuru-guzik-group.github.io/olympus/
MIT License
81 stars 22 forks source link
chemistry experimental-design machine-learning materials-science optimization

Olympus: a benchmarking framework for noisy optimization and experiment planning

Build Status codecov Code style: black

alt text

Olympus provides a consistent and easy-to-use framework for benchmarking optimization algorithms. With olympus you can:

You can find more details in the documentation.

Installation

Olympus can be installed with pip:

pip install olymp

The package can also be installed via conda:

conda install -c conda-forge olymp

Finally, the package can be built from source:

git clone https://github.com/aspuru-guzik-group/olympus.git
cd olympus
python setup.py develop

You can explore Olympus using the following Colab notebook:

Open In Colab

Dependencies

The installation only requires:

Additional libraries are required to use specific modules and objects. Olympus will alert you about these requirements as you try access the related functionality.

Use cases

The following projects have used Olympus to streamline the benchmarking of optimization algorithms.

Citation

Olympus is an academinc research software. If you make use of it in scientific publications, please cite the following articles:

@article{hase_olympus_2021,
      author = {H{\"a}se, Florian and Aldeghi, Matteo and Hickman, Riley J. and Roch, Lo{\"\i}c M. and Christensen, Melodie and Liles, Elena and Hein, Jason E. and Aspuru-Guzik, Al{\'a}n},
      doi = {10.1088/2632-2153/abedc8},
      issn = {2632-2153},
      journal = {Machine Learning: Science and Technology},
      month = jul,
      number = {3},
      pages = {035021},
      title = {Olympus: a benchmarking framework for noisy optimization and experiment planning},
      volume = {2},
      year = {2021}
}

@misc{hickman_olympus_2023,
    author = {Hickman, Riley and Parakh, Priyansh and Cheng, Austin and Ai, Qianxiang and Schrier, Joshua and Aldeghi, Matteo and Aspuru-Guzik, Al{\'a}n},
    doi = {10.26434/chemrxiv-2023-74w8d},
    language = {en},
    month = may,
    publisher = {ChemRxiv},
    shorttitle = {Olympus, enhanced},
    title = {Olympus, enhanced: benchmarking mixed-parameter and multi-objective optimization in chemistry and materials science},
    urldate = {2023-06-21},
    year = {2023},
}

The preprint is also available at https://arxiv.org/abs/2010.04153.

License

Olympus is distributed under an MIT License.