This project contains an R-package with code to simulate and investigate the effects of different p-hacking strategies. It has the following components:
The phackR package is not on CRAN, but you can install it from GitHub:
library(devtools)
install_github("astefan1/phacking_compendium/phackR", build_vignettes = TRUE)
To get an overview of the structure of the code and the simulation functions in the package, read the package vignette:
library(phackR)
utils::vignette("phackR_vignette", "phackR")
You can start the Shiny app directly from the package by using the following code:
phackR::runShinyPHack()
Alternatively, you can directly access the Shiny app online via https://shiny.psy.lmu.de/felix/ShinyPHack/
All simulation results can be reproduced using the code in the /simulations folder of this Github project. First, follow the steps above to install the phackR package. Then, run the script "00_simulationhelpers.R", followed by all R scripts with the "_simulation.R" suffix. Results can be visualized using the scripts with the prefix "plot\".
> sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 11.6.8
Matrix products: default
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] BayesFactor_0.9.12-4.4 Matrix_1.5-1 coda_0.19-4
[4] phackR_0.0.0.9000 dplyr_1.0.10 ggforce_0.4.1
[7] R.devices_2.17.1 wesanderson_0.3.6 ggplot2_3.3.6
[10] testthat_3.1.5
loaded via a namespace (and not attached):
[1] fs_1.5.2 usethis_2.1.6 devtools_2.4.5 insight_0.18.6
[5] rprojroot_2.0.3 tools_4.2.1 profvis_0.3.7 backports_1.4.1
[9] utf8_1.2.2 R6_2.5.1 colorspace_2.0-3 urlchecker_1.0.1
[13] withr_2.5.0 tidyselect_1.1.2 prettyunits_1.1.1 processx_3.7.0
[17] compiler_4.2.1 sgeostat_1.0-27 performance_0.10.0 cli_3.4.1
[21] mice_3.14.0 desc_1.4.2 labeling_0.4.2 scales_1.2.1
[25] DEoptimR_1.0-11 mvtnorm_1.1-3 robustbase_0.95-0 mc2d_0.1-21
[29] callr_3.7.2 pbapply_1.5-0 stringr_1.4.1 digest_0.6.29
[33] rmarkdown_2.17 R.utils_2.12.0 base64enc_0.1-3 WRS2_1.1-4
[37] pkgconfig_2.0.3 htmltools_0.5.3 sessioninfo_1.2.2 fastmap_1.1.0
[41] htmlwidgets_1.5.4 rlang_1.0.6 rstudioapi_0.14 shiny_1.7.2
[45] generics_0.1.3 farver_2.1.1 car_3.1-1 R.oo_1.25.0
[49] magrittr_2.0.3 Rcpp_1.0.9 munsell_0.5.0 fansi_1.0.3
[53] abind_1.4-5 lifecycle_1.0.3 R.methodsS3_1.8.2 yaml_2.3.5
[57] stringi_1.7.8 carData_3.0-5 MASS_7.3-57 brio_1.1.3
[61] pkgbuild_1.3.1 plyr_1.8.7 grid_4.2.1 parallel_4.2.1
[65] promises_1.2.0.1 shinydashboard_0.7.2 forcats_0.5.2 crayon_1.5.2
[69] miniUI_0.1.1.1 lattice_0.20-45 knitr_1.40 aplpack_1.3.5
[73] ps_1.7.1 pillar_1.8.1 tcltk_4.2.1 pkgload_1.3.1
[77] glue_1.6.2 evaluate_0.17 remotes_2.4.2 vctrs_0.4.2
[81] tweenr_2.0.2 httpuv_1.6.6 MatrixModels_0.5-1 gtable_0.3.1
[85] purrr_0.3.5 polyclip_1.10-4 tidyr_1.2.1 reshape_0.8.9
[89] cachem_1.0.6 xfun_0.33 mime_0.12 xtable_1.8-4
[93] broom_1.0.1 later_1.3.0 tibble_3.1.8 memoise_2.0.1
[97] mvoutlier_2.1.1 ellipsis_0.3.2