model type | training strategy | mAP(%) on VOC07 test | Iterations | model_name | backbone |
---|---|---|---|---|---|
conv5, a trous, strides=16 without ohem | 4 stages iteration as Faster RCNN | 75.77 | total steps 400k satge1 80k stage2 120k stage3 80k stage4 120k | model_A | resnet_101 |
conv5, a trous, strides=16 without ohem | only training total_loss | 76.35 | 110k | model_B | resnet_101 |
total_loss = loss_rpn_objectness + loss_rpn_bboxes + loss_rfcn_classes + loss_rfcn_bboxes
model_name | aeroplane | bicycle | bird | boat | bottle | bus | car | cat | chair | cow | diningtable | dog | horse | motorbike | person | pottedplant | sheep | sofa | train | tvmonitor |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
model_A | 0.8008 | 0.8004 | 0.7861 | 0.6579 | 0.4836 | 0.8646 | 0.8531 | 0.8774 | 0.6081 | 0.8517 | 0.6935 | 0.8884 | 0.8616 | 0.7821 | 0.7805 | 0.4693 | 0.7814 | 0.7742 | 0.7845 | 0.7516 |
model_B | 0.8020 | 0.7940 | 0.7877 | 0.6402 | 0.6571 | 0.8599 | 0.8578 | 0.8736 | 0.6183 | 0.8223 | 0.6492 | 0.8728 | 0.8447 | 0.8201 | 0.7888 | 0.4607 | 0.7703 | 0.7558 | 0.8354 | 0.7596 |
model_A
momentum: 0.9
stage1 total steps 80k, init learning rate 0.001, step 60k learning rate 0.0001
stage2 total steps 120k, init learning rate 0.001, step 80k learning rate 0.0001
stage3 total steps 80k, init learning rate 0.001, step 60k learning rate 0.0001
stage4 total steps 120k, init learning rate 0.001, step 80k learning rate 0.0001
model_B
momentum: 0.9
total steps 110k, init learning rate 0.001, step 80k learning rate 0.0001
model_name | download link | password |
---|---|---|
model_A | https://pan.baidu.com/s/1jIQThtW | cgwf |
model_B | https://pan.baidu.com/s/1i4QEVRZ | v9ua |
tools/trainval_net_rfcn.py
file.
lib/nets
.--cfg
parameter which is the config file you want to use. Some config file can be find in file experiments/cfgs
.--weight
parameter which is the pretrained model weights file.--net
which is the net architecture you want to use.loss function
as you requirement in line network.py#L646RFCN
architecture in line resnet_v1_rfcn_hole.py#L279_resnet_v1_rfcn_hole.py
and network.py
file.3 R-FCN: Object Detection via Region-based Fully Convolutional Networks
4 An Implementation of Faster RCNN with Study for Region Sampling