avikus-ai / detect_train

YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite
https://docs.ultralytics.com
GNU Affero General Public License v3.0
1 stars 0 forks source link

[English](README.md) | [简体中文](README.zh-CN.md)
YOLOv5 CI YOLOv5 Citation Docker Pulls
Run on Gradient Open In Colab Open In Kaggle

YOLOv5 🚀 is the world's most loved vision AI, representing Ultralytics open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development. We hope that the resources here will help you get the most out of YOLOv5. Please browse the YOLOv5 Docs for details, raise an issue on GitHub for support, and join our Discord community for questions and discussions! To request an Enterprise License please complete the form at [Ultralytics Licensing](https://ultralytics.com/license).


YOLOv8 🚀 NEW

We are thrilled to announce the launch of Ultralytics YOLOv8 🚀, our NEW cutting-edge, state-of-the-art (SOTA) model released at https://github.com/ultralytics/ultralytics. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection, image segmentation and image classification tasks.

See the YOLOv8 Docs for details and get started with:

PyPI version Downloads

pip install ultralytics

Documentation

See the YOLOv5 Docs for full documentation on training, testing and deployment. See below for quickstart examples.

Install Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a [**Python>=3.8.0**](https://www.python.org/) environment, including [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/). ```bash git clone https://github.com/ultralytics/yolov5 # clone cd yolov5 pip install -r requirements.txt # install ```
Inference YOLOv5 [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). ```python import torch # Model model = torch.hub.load("ultralytics/yolov5", "yolov5s") # or yolov5n - yolov5x6, custom # Images img = "https://ultralytics.com/images/zidane.jpg" # or file, Path, PIL, OpenCV, numpy, list # Inference results = model(img) # Results results.print() # or .show(), .save(), .crop(), .pandas(), etc. ```
Inference with detect.py `detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`. ```bash python detect.py --weights yolov5s.pt --source 0 # webcam img.jpg # image vid.mp4 # video screen # screenshot path/ # directory list.txt # list of images list.streams # list of streams 'path/*.jpg' # glob 'https://youtu.be/LNwODJXcvt4' # YouTube 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream ```
Training The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) results. [Models](https://github.com/ultralytics/yolov5/tree/master/models) and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are 1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training) times faster). Use the largest `--batch-size` possible, or pass `--batch-size -1` for YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB. ```bash python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128 yolov5s 64 yolov5m 40 yolov5l 24 yolov5x 16 ```
Tutorials - [Train Custom Data](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data) 🚀 RECOMMENDED - [Tips for Best Training Results](https://docs.ultralytics.com/yolov5/tutorials/tips_for_best_training_results) ☘️ - [Multi-GPU Training](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training) - [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading) 🌟 NEW - [TFLite, ONNX, CoreML, TensorRT Export](https://docs.ultralytics.com/yolov5/tutorials/model_export) 🚀 - [NVIDIA Jetson platform Deployment](https://docs.ultralytics.com/yolov5/tutorials/running_on_jetson_nano) 🌟 NEW - [Test-Time Augmentation (TTA)](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation) - [Model Ensembling](https://docs.ultralytics.com/yolov5/tutorials/model_ensembling) - [Model Pruning/Sparsity](https://docs.ultralytics.com/yolov5/tutorials/model_pruning_and_sparsity) - [Hyperparameter Evolution](https://docs.ultralytics.com/yolov5/tutorials/hyperparameter_evolution) - [Transfer Learning with Frozen Layers](https://docs.ultralytics.com/yolov5/tutorials/transfer_learning_with_frozen_layers) - [Architecture Summary](https://docs.ultralytics.com/yolov5/tutorials/architecture_description) 🌟 NEW - [Roboflow for Datasets, Labeling, and Active Learning](https://docs.ultralytics.com/yolov5/tutorials/roboflow_datasets_integration) - [ClearML Logging](https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration) 🌟 NEW - [YOLOv5 with Neural Magic's Deepsparse](https://docs.ultralytics.com/yolov5/tutorials/neural_magic_pruning_quantization) 🌟 NEW - [Comet Logging](https://docs.ultralytics.com/yolov5/tutorials/comet_logging_integration) 🌟 NEW

Integrations




Roboflow ClearML ⭐ NEW Comet ⭐ NEW Neural Magic ⭐ NEW
Label and export your custom datasets directly to YOLOv5 for training with Roboflow Automatically track, visualize and even remotely train YOLOv5 using ClearML (open-source!) Free forever, Comet lets you save YOLOv5 models, resume training, and interactively visualise and debug predictions Run YOLOv5 inference up to 6x faster with Neural Magic DeepSparse

Ultralytics HUB

Experience seamless AI with Ultralytics HUB ⭐, the all-in-one solution for data visualization, YOLOv5 and YOLOv8 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly Ultralytics App. Start your journey for Free now!

Why YOLOv5

YOLOv5 has been designed to be super easy to get started and simple to learn. We prioritize real-world results.

YOLOv5-P5 640 Figure

Figure Notes - **COCO AP val** denotes mAP@0.5:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536. - **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32. - **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8. - **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`

Pretrained Checkpoints

Model size
(pixels)
mAPval
50-95
mAPval
50
Speed
CPU b1
(ms)
Speed
V100 b1
(ms)
Speed
V100 b32
(ms)
params
(M)
FLOPs
@640 (B)
YOLOv5n 640 28.0 45.7 45 6.3 0.6 1.9 4.5
YOLOv5s 640 37.4 56.8 98 6.4 0.9 7.2 16.5
YOLOv5m 640 45.4 64.1 224 8.2 1.7 21.2 49.0
YOLOv5l 640 49.0 67.3 430 10.1 2.7 46.5 109.1
YOLOv5x 640 50.7 68.9 766 12.1 4.8 86.7 205.7
YOLOv5n6 1280 36.0 54.4 153 8.1 2.1 3.2 4.6
YOLOv5s6 1280 44.8 63.7 385 8.2 3.6 12.6 16.8
YOLOv5m6 1280 51.3 69.3 887 11.1 6.8 35.7 50.0
YOLOv5l6 1280 53.7 71.3 1784 15.8 10.5 76.8 111.4
YOLOv5x6
+ TTA
1280
1536
55.0
55.8
72.7
72.7
3136
-
26.2
-
19.4
-
140.7
-
209.8
-
Table Notes - All checkpoints are trained to 300 epochs with default settings. Nano and Small models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml). - **mAPval** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.
Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65` - **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.
Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1` - **TTA** [Test Time Augmentation](https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation) includes reflection and scale augmentations.
Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`

Segmentation

Our new YOLOv5 release v7.0 instance segmentation models are the fastest and most accurate in the world, beating all current SOTA benchmarks. We've made them super simple to train, validate and deploy. See full details in our Release Notes and visit our YOLOv5 Segmentation Colab Notebook for quickstart tutorials.

Segmentation Checkpoints
We trained YOLOv5 segmentations models on COCO for 300 epochs at image size 640 using A100 GPUs. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) notebooks for easy reproducibility. | Model | size
(pixels) | mAPbox
50-95 | mAPmask
50-95 | Train time
300 epochs
A100 (hours) | Speed
ONNX CPU
(ms) | Speed
TRT A100
(ms) | params
(M) | FLOPs
@640 (B) | | ------------------------------------------------------------------------------------------ | --------------------- | -------------------- | --------------------- | --------------------------------------------- | ------------------------------ | ------------------------------ | ------------------ | ---------------------- | | [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640 | 27.6 | 23.4 | 80:17 | **62.7** | **1.2** | **2.0** | **7.1** | | [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640 | 37.6 | 31.7 | 88:16 | 173.3 | 1.4 | 7.6 | 26.4 | | [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640 | 45.0 | 37.1 | 108:36 | 427.0 | 2.2 | 22.0 | 70.8 | | [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640 | 49.0 | 39.9 | 66:43 (2x) | 857.4 | 2.9 | 47.9 | 147.7 | | [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640 | **50.7** | **41.4** | 62:56 (3x) | 1579.2 | 4.5 | 88.8 | 265.7 | - All checkpoints are trained to 300 epochs with SGD optimizer with `lr0=0.01` and `weight_decay=5e-5` at image size 640 and all default settings.
Runs logged to https://wandb.ai/glenn-jocher/YOLOv5_v70_official - **Accuracy** values are for single-model single-scale on COCO dataset.
Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt` - **Speed** averaged over 100 inference images using a [Colab Pro](https://colab.research.google.com/signup) A100 High-RAM instance. Values indicate inference speed only (NMS adds about 1ms per image).
Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1` - **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`.
Reproduce by `python export.py --weights yolov5s-seg.pt --include engine --device 0 --half`
Segmentation Usage Examples  Open In Colab ### Train YOLOv5 segmentation training supports auto-download COCO128-seg segmentation dataset with `--data coco128-seg.yaml` argument and manual download of COCO-segments dataset with `bash data/scripts/get_coco.sh --train --val --segments` and then `python train.py --data coco.yaml`. ```bash # Single-GPU python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 # Multi-GPU DDP python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3 ``` ### Val Validate YOLOv5s-seg mask mAP on COCO dataset: ```bash bash data/scripts/get_coco.sh --val --segments # download COCO val segments split (780MB, 5000 images) python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 # validate ``` ### Predict Use pretrained YOLOv5m-seg.pt to predict bus.jpg: ```bash python segment/predict.py --weights yolov5m-seg.pt --source data/images/bus.jpg ``` ```python model = torch.hub.load( "ultralytics/yolov5", "custom", "yolov5m-seg.pt" ) # load from PyTorch Hub (WARNING: inference not yet supported) ``` | ![zidane](https://user-images.githubusercontent.com/26833433/203113421-decef4c4-183d-4a0a-a6c2-6435b33bc5d3.jpg) | ![bus](https://user-images.githubusercontent.com/26833433/203113416-11fe0025-69f7-4874-a0a6-65d0bfe2999a.jpg) | | ---------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------- | ### Export Export YOLOv5s-seg model to ONNX and TensorRT: ```bash python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --device 0 ```

Classification

YOLOv5 release v6.2 brings support for classification model training, validation and deployment! See full details in our Release Notes and visit our YOLOv5 Classification Colab Notebook for quickstart tutorials.

Classification Checkpoints
We trained YOLOv5-cls classification models on ImageNet for 90 epochs using a 4xA100 instance, and we trained ResNet and EfficientNet models alongside with the same default training settings to compare. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) for easy reproducibility. | Model | size
(pixels) | acc
top1 | acc
top5 | Training
90 epochs
4xA100 (hours) | Speed
ONNX CPU
(ms) | Speed
TensorRT V100
(ms) | params
(M) | FLOPs
@224 (B) | | -------------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | -------------------------------------------- | ------------------------------ | ----------------------------------- | ------------------ | ---------------------- | | [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-cls.pt) | 224 | 64.6 | 85.4 | 7:59 | **3.3** | **0.5** | **2.5** | **0.5** | | [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-cls.pt) | 224 | 71.5 | 90.2 | 8:09 | 6.6 | 0.6 | 5.4 | 1.4 | | [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-cls.pt) | 224 | 75.9 | 92.9 | 10:06 | 15.5 | 0.9 | 12.9 | 3.9 | | [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-cls.pt) | 224 | 78.0 | 94.0 | 11:56 | 26.9 | 1.4 | 26.5 | 8.5 | | [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-cls.pt) | 224 | **79.0** | **94.4** | 15:04 | 54.3 | 1.8 | 48.1 | 15.9 | | | | | | | | | | | | [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet18.pt) | 224 | 70.3 | 89.5 | **6:47** | 11.2 | 0.5 | 11.7 | 3.7 | | [ResNet34](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet34.pt) | 224 | 73.9 | 91.8 | 8:33 | 20.6 | 0.9 | 21.8 | 7.4 | | [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet50.pt) | 224 | 76.8 | 93.4 | 11:10 | 23.4 | 1.0 | 25.6 | 8.5 | | [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v7.0/resnet101.pt) | 224 | 78.5 | 94.3 | 17:10 | 42.1 | 1.9 | 44.5 | 15.9 | | | | | | | | | | | | [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b0.pt) | 224 | 75.1 | 92.4 | 13:03 | 12.5 | 1.3 | 5.3 | 1.0 | | [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b1.pt) | 224 | 76.4 | 93.2 | 17:04 | 14.9 | 1.6 | 7.8 | 1.5 | | [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b2.pt) | 224 | 76.6 | 93.4 | 17:10 | 15.9 | 1.6 | 9.1 | 1.7 | | [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v7.0/efficientnet_b3.pt) | 224 | 77.7 | 94.0 | 19:19 | 18.9 | 1.9 | 12.2 | 2.4 |
Table Notes (click to expand) - All checkpoints are trained to 90 epochs with SGD optimizer with `lr0=0.001` and `weight_decay=5e-5` at image size 224 and all default settings.
Runs logged to https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2 - **Accuracy** values are for single-model single-scale on [ImageNet-1k](https://www.image-net.org/index.php) dataset.
Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224` - **Speed** averaged over 100 inference images using a Google [Colab Pro](https://colab.research.google.com/signup) V100 High-RAM instance.
Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1` - **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`.
Reproduce by `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`
Classification Usage Examples  Open In Colab ### Train YOLOv5 classification training supports auto-download of MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Imagenette, Imagewoof, and ImageNet datasets with the `--data` argument. To start training on MNIST for example use `--data mnist`. ```bash # Single-GPU python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128 # Multi-GPU DDP python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3 ``` ### Val Validate YOLOv5m-cls accuracy on ImageNet-1k dataset: ```bash bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images) python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate ``` ### Predict Use pretrained YOLOv5s-cls.pt to predict bus.jpg: ```bash python classify/predict.py --weights yolov5s-cls.pt --source data/images/bus.jpg ``` ```python model = torch.hub.load( "ultralytics/yolov5", "custom", "yolov5s-cls.pt" ) # load from PyTorch Hub ``` ### Export Export a group of trained YOLOv5s-cls, ResNet and EfficientNet models to ONNX and TensorRT: ```bash python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224 ```

Environments

Get started in seconds with our verified environments. Click each icon below for details.

Contribute

We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our Contributing Guide to get started, and fill out the YOLOv5 Survey to send us feedback on your experiences. Thank you to all our contributors!

License

Ultralytics offers two licensing options to accommodate diverse use cases:

Contact

For YOLOv5 bug reports and feature requests please visit GitHub Issues, and join our Discord community for questions and discussions!