awr7 / MoM

0 stars 0 forks source link

MoM

Harness the collective intelligence of multiple large language models (LLMs) to enhance decision-making and problem-solving capabilities in complex scenarios.

What do we hope to achieve with the integration of diverse AI model outputs?

Technology Stack

graph TD;
    B[Python]
    B --> D[AI Models]
    D --> E[Claude Opus ]
    D --> F[Google Gemini]
    D --> K[Replicate API]
    K --> G[Meta LLaMA]
    K --> H[Mistral AI]
    D --> J[GPT 4o]
    B --> L[Environment Management]
    L --> M[Python-dotenv]
Technology Description
Python Programming language used for backend and AI integration.
Anthropic Claude One of the LLMs used for generating insights.
Google Gemini Another LLM used for generating insights.
Meta LLaMA An LLM used for generating insights.
Mistral AI An LLM used for generating insights.
OpenAI API API for accessing OpenAI's GPT models.
Replicate API API for accessing various AI models and tools.
Python-dotenv Read key-value pairs from a .env file and set them as environment variables.

King Data Flow

graph LR;
    A[User Input] --> B[Backend API]
    B --> C[Task Distribution]
    C --> D[Peasant AIs]
    D --> E[Meta LLaMA]
    D --> F[Google Gemini]
    D --> G[Mistral AI]
    D --> H[Anthropic Claude]
    E --> I[Responses]
    F --> I
    G --> I
    H --> I
    I --> J[King AI Evaluation]
    J --> K[Final Answer]
    K --> L[User Output]

Duopoly Data Flow

graph LR

    B(User Input) --> C[GPT 4o]
    B --> D[Claude Opus]
    C --> E[Advisor Models Provide Insights]
    D --> E
    E --> F[Primary Models Discuss Findings]
    F --> G[Resolve Conflicts]
    G --> H[Reach Consensus]
    H --> I[Provide Final Answer]
    I --> J[End]