The AWS Streamer is a collection of video processing and streaming tools for AWS platform. It will enable users to stream from multiple camera sources, process the video streams and upload to the cloud and/or local storage. It can be used standalone on the edge device, inside AWS Lambda functions, AWS ECS container or running on an AWS IoT Greengrass as a Lambda.
Key Features • Build • Usage • Notes • Debugging • Security • License
List of features provided by this library:
With pip:
pip install git+https://github.com/awslabs/aws-streamer.git
or
git clone https://github.com/awslabs/aws-streamer.git
cd aws-streamer
pip install -v .
To set extra CMake flags (see below table):
python3 setup.py install
python3 setup.py build_ext --cmake-args=-DBUILD_KVS=ON
In place:
virtualenv venv
source venv/bin/activate
pip install --upgrade wheel pip setuptools
pip install --upgrade --requirement requirements.txt
./build.sh [optional:CMAKE_FLAGS]
CMake flag | Description | Default value |
---|---|---|
-DBUILD_KVS | Build KVS GStreamer plug-in | OFF |
-DBUILD_KVS_WEBRTC | Build KVS WebRTC binaries | OFF |
-BUILD_NEO_DLR | Build SageMaker NEO runtime | OFF |
-BUILD_MXNET | Build MXnet GStreamer plug-in | OFF |
cd examples/test_app
python3 app.py ../configs/testsrc_display.json
There are two full-blown demos available:
Click on links above to read more and see detailed architecture.
import awstreamer
client = awstreamer.client()
To stream from your camera to the KVS:
client.start({
"source": {
"name": "videotestsrc",
"is-live": True,
"do-timestamp": True,
"width": 640,
"height": 480,
"fps": 30
},
"sink": {
"name": "kvssink",
"stream-name": "TestStream"
}
})
To run multiple pipelines in parallel asynchronously (i.e. without waiting for the pipeline to finish):
client.schedule({
"pipeline_0": {
"source": {
"name": "videotestsrc",
"is-live": True,
"do-timestamp": True,
"width": 640,
"height": 480,
"fps": 30
},
"sink": {
"name": "kvssink",
"stream-name": "TestStream0"
}
},
"pipeline_1": {
"source": {
"name": "videotestsrc",
"is-live": True,
"do-timestamp": True,
"width": 1280,
"height": 720,
"fps": 30
},
"sink": {
"name": "kvssink",
"stream-name": "TestStream1"
}
}
})
To perform ML inference on the video stream:
def my_callback(metadata):
print("Inference results: " + str(metadata))
client.start({
"pipeline": "DeepStream",
"source": {
"name": "filesrc",
"location": "/path/to/video.mp4",
"do-timestamp": False
},
"nvstreammux": {
"width": 1280,
"height": 720,
"batch-size": 1
},
"nvinfer": {
"enabled": True,
"config-file-path": "/path/to/nvinfer_config.txt"
},
"callback": my_callback
})
To start recording of video segments to disk:
client.schedule({
"camera_0": {
"pipeline": "DVR",
"source": {
"name": "videotestsrc",
"is-live": True,
"do-timestamp": True,
"width": 640,
"height": 480,
"fps": 30
},
"sink": {
"name": "splitmuxsink",
"location": "/video/camera_0/output_%02d.mp4",
"segment_duration": "00:01:00",
"time_to_keep_days": 1
}
}
})
The command above will start recording 1-minute video segments to the given location.
To get list of files within given timestamp:
from awstreamer.utils.video import get_video_files_in_time_range
file_list = get_video_files_in_time_range(
path = "/video/camera_0/",
timestamp_from = "2020-08-05 13:03:47",
timestamp_to = "2020-08-05 13:05:40",
)
To merge video files into a single one:
from awstreamer.utils.video import merge_video_files
merged = merge_video_files(
files = file_list,
destination_file = "merged.mkv"
)
To get video frame from any point in the pipeline:
def my_callback(buffer):
'''
This function will be called on every frame.
Buffer is a ndarray, do with it what you like!
'''
print("Buffer info: %s, %s, %s" % (str(type(buffer)), str(buffer.dtype), str(buffer.shape)))
client.start({
"pipeline": {
"source": "videotestsrc",
"source_filter": "capsfilter",
"sink": "autovideosink"
},
"source": {
"is-live": True,
"do-timestamp": True
},
"source_filter": {
"caps": "video/x-raw,width=640,height=480,framerate=30/1"
},
"source_filter": {
"probes": {
"src": my_callback
}
}
})
Above code will attach the probe to the source (outbound) pad of the source_filter plug-in.
If you use AWS plug-in (e.g. KVS) outside of AWS environment (i.e. not in AWS Greengrass IoT, AWS Lambda, etc.), remember to set the following env variables:
export AWS_ACCESS_KEY_ID=xxxxxxxxx
export AWS_SECRET_ACCESS_KEY=xxxxxxxxxx
export AWS_DEFAULT_REGION=us-east-1 (for example)
To enable more debugging information from Gstreamer elements, set this env variable:
export GST_DEBUG=4
More details here: https://gstreamer.freedesktop.org/documentation/tutorials/basic/debugging-tools.html?gi-language=c
See CONTRIBUTING for more information.
This project is licensed under the Apache-2.0 License.