baggepinnen / RobustFactorizations.jl

Robust SVD and PCA in Julia
MIT License
7 stars 1 forks source link

RobustFactorizations

CI Codecov

This package provides some utilities for robust factorization of matrices, useful for, e.g., matrix completion and denoising.

We try to find the low-rank matrix $L$ when given matrix $L_n$ corrupted by sparse noise $S$ and dense noise $D$ according to $L_n = L + D + S$. Typically, $S$ contains very few entries, but they may be very large, while the entries in $D$ are much smaller, and maybe normally distributed.

Examples

Only sparse noise

L = lowrank(100,10,3)
S = 10sparserandn(100,10)
Ln = L + S
res = rpca(Ln, verbose=false)
@show opnorm(L - res.L)/opnorm(L)

Dense and sparse noise

L = lowrank(100,10,3)      # A low-rank matrix
D = randn(100,10)          # A dense noise matrix
S = 10sparserandn(100,10)  # A sparse noise matrix (large noise)
Ln = L + D + S             # Ln is the sum of them all
λ = 1/sqrt(maximum(size(L)))
res1 = rpca(Ln, verbose=false)
res2 = rpca(Ln, verbose=false, proxD=SqrNormL2(λ/std(D))) # proxD parameter might need tuning
@show opnorm(L - res1.L)/opnorm(L), opnorm(L - res2.L)/opnorm(L)

Functions

The rpca function is the recommended default choice:

rpca(Ln::Matrix; λ=1.0 / √(maximum(size(A))), iters=1000, tol=1.0e-7, ρ=1.5, verbose=false, nonnegL=false, nonnegS=false, nukeA=true)

It solves the following problem:

\text{minimize}_{L,D,S} ||L||_* + \lambda ||S||_1 + \gamma ||D||^2_2 \quad \text{s.t. } L_n = L+D+S

Reference:

"The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices", Zhouchen Lin, Minming Chen, Leqin Wu, Yi Ma, https://people.eecs.berkeley.edu/~yima/psfile/Lin09-MP.pdf

Arguments:

To speed up convergence you may either increase the tolerance or increase ρ. Increasing tol is often the best solution.