Add video inference .
Code fork form https://github.com/wang-xinyu/tensorrtx.git .
The Pytorch implementation is ultralytics/yolov5.
1. generate yolov5s.wts from pytorch implementation with yolov5s.pt
git clone https://github.com/wang-xinyu/tensorrtx.git
git clone https://github.com/ultralytics/yolov5.git
// download its weights 'yolov5s.pt'
cd yolov5
cp ../tensorrtx/yolov5s/gen_wts.py .
python gen_wts.py
// a file 'yolov5s.wts' will be generated.
2. put yolov5s.wts into yolov5, build and run
mv yolov5s.wts ../tensorrtx/yolov5/
cd ../tensorrtx/yolov5
mkdir build
cd build
cmake ..
make
sudo ./yolov5s -s // serialize model to plan file i.e. 'yolov5s.engine'
sudo ./yolov5s -d ../samples // deserialize plan file and run inference, the images in samples will be processed.
3. check the images generated, as follows. _zidane.jpg and _bus.jpg
See the readme in home page.