bcgov / nr-rfc-processing

River forecast centre data processing solution
Apache License 2.0
4 stars 2 forks source link
flnr iit nr rfc

Lifecycle:Stable

Credential YAML

This YAML file will be passed to the --envpth argument to be able to download MODIS/VIIRS/Sentinel-2 data. This file needs to be located inside the mounted volume store in order for the internal processes to access the credentials.

--envpth /data/<credential>.yml
YAML ```yaml # register at https://urs.earthdata.nasa.gov/home EARTHDATA_USER: username_without_quotes EARTHDATA_PASS: password_without_quotes # register at https://scihub.copernicus.eu/dhus/#/self-registration SENTINELSAT_USER: username_without_quotes SENTINELSAT_PASS: password_without_quotes ```

MODIS/VIIRS Pipeline

Docker

Building Docker Image

To build the image from this directory:

docker build -t <tagname> .

Running Docker Image

To run the Docker image use the following schema:

docker run --rm -v <local store>:/data <tagname> <extra_commands>

Input Formats

ARG VALUES TYPE
envpth Linux path string
date YYYY.MM.DD string
sat modis / viirs / sentinel string
typ watersheds / basins string
days 1 / 5 / 8 int

Docker Options

OPTION CAUSE
--rm Removes container once it finishes running
-v Mount volume to Docker container

Help

To list out commands available:

The default CMD is "--help" to list out the available commands.

docker run --rm -v <mount_point>:/data <tag_name>

FAQ

Why is there an authentication error when downloading MODIS or VIIRS data?

Answer A HTML 503 Authentication Error is an expected behaviour from the NASA servers while downloading large amounts of data. Be patient as the download will retry and continue once the service is made available again.

Daily-Pipeline

docker run --rm -v <mount_point>:/data <tag_name> daily-pipeline --envpth /data/<creds.yml> --date <target_date: YYYY.MM.DD>

daily-pipeline kicks off the entire process chain that will include performing the following per satellite (MODIS/VIIRS):

Build Directory Structure

Builds necessary supporting files and directories in order for the process pipeline to properly manage file I/O.

docker run --rm -v <mount_point>:/data <tag_name> build

High Level Directory Structure:

Download

MODIS requires 5 or 8 days in order to build a composite of valid data. Option to download one day is possible. VIIRS will download a single day as it is a cloud-gap-filled product.

docker run --rm -v <mount_point>:/data <tag_name> download --envpth /data/<creds.yml> --sat <modis/viirs> --date <YYYY.MM.DD> --days <1/5/8>

Output:

Process

MODIS requires 5 or 8 days in order to build a composite of valid data. Default value is 5 days.

docker run --rm -v <mount_point>:/data <tag_name> process --sat <modis/viirs> --date <YYYY.MM.DD> --days <1/5/8>

Output:

Caclulate Snow Coverage

Analyze each watershed and basin to calculate the snow coverage based on the NDSI value.

docker run --rm -v <mount_point>:/data <tag_name> run-analysis --typ <watersheds/basins> -sat <modis/viirs> --date <YYYY.MM.DD>

Output:

Database To CSV

Convert the SQLITE3 database into a CSV

docker run --rm -v <mount_point>:/data <tag_name> dbtocsv

Output:

Build KMLs and Colour Ramped GTiffs

Build the colour-ramp GTiff and KML versions of the watersheds/basins.

docker run --rm -v <mount_point>:/data <tag_name> build-kml --date <YYYY.MM.DD> --typ <watersheds/basins> --sat <modis/viirs>

Output :

Compose KMLs

Compose built KML files into a heirarchal KML

docker run --rm -v <mount_point>:/data <tag_name> compose-kmls --date <YYYY.MM.DD> --sat <modis/viirs>

Zip KMLs

ZIP KMLs into a ZIP file

docker run --rm -v <mount_point>:/data <tag_name> zip-kmls

KNOWN ISSUE: ZIP file is larger than original KMLs -- deprecated

Plot

Plot all watersheds and basins into PNG plots with mapped colour bar.

docker run --rm -v <mount_point>:/data <tag_name> plot --date <YYYY.MM.DD> --sat <modis/viirs>

Clean

Manually clean up files and directories.

TARGET CAUSE
all Non-vital directories in /data
intermediate Intermediate files in intermediate_\[tif/kml\]
output Output files in output_tif
downloads Raw granules in modis-terra/
watersheds All files/dirs in watersheds/
basins All files/dirs in basins/
docker run --rm -v <mount_point>:/data <tag_name> clean --target <target>

Sentinel-2 Pipeline

Docker

Building Docker Image

To build the image from this directory:

docker build -t <tagname> .

Running Docker Image

To run the Docker image use the following schema:

docker run --rm -it -v <local store>:/data <tagname> <extra_commands>

It is necessary to run the docker container in interactive mode (by including the -it option when calling docker run) as the Sentinel-2 process requires user interaction.

Process-Sentinel

Call the Sentinel-2 pipeline

docker run --rm -it -v <mount point>:/data <tag name> process-sentinel --creds /data/<creds.yml> --lat <latitude> --lng <longtitude> --date <YYYY.MM.DD>

The pipeline will return a date ordered list of 10

OPTIONAL ARGS VALUES DEFAULT
--rgb true / false false
--max-allowable-cloud int 50
--force-download true / false false
--day-tolerance int 50

Outputs are logged to a log file in /data/log/.

Argument Details:

Example 0

Using default arguments to demonstrate expected output.

docker run --rm -it -v <mount point>:/data <tag name> process-sentinel --creds /data/sat.yml --lat 49.12 --lng -126.5  --date 2021.03.18

0 : DATE: 2021-03-17 || CLOUD%:  45.588648
1 : DATE: 2021-03-14 || CLOUD%:  17.49127
2 : DATE: 2021-03-07 || CLOUD%:  39.499657
3 : DATE: 2021-02-05 || CLOUD%:  16.117952
4 : DATE: 2021-01-31 || CLOUD%:  23.281466
5 : DATE: 2021-01-28 || CLOUD%:  2.606739
Pick which product to download and process [0-5/n]:

Example 1

Calling with high cloud tolerance and demonstrate upper limit of selection and typical output.

docker run --rm -it -v <mount point>:/data <tag name> process-sentinel --creds /data/sat.yml --lat 49.73 --lng -126.5  --date 2021.03.18 --rgb true --max-allowable-cloud 90

0 : DATE: 2021-03-17 || CLOUD%:  32.746968
1 : DATE: 2021-03-14 || CLOUD%:  87.006531
2 : DATE: 2021-03-09 || CLOUD%:  45.446411
3 : DATE: 2021-03-07 || CLOUD%:  74.669036
4 : DATE: 2021-02-25 || CLOUD%:  84.000973
5 : DATE: 2021-02-22 || CLOUD%:  79.523277
6 : DATE: 2021-02-17 || CLOUD%:  56.401063
7 : DATE: 2021-02-15 || CLOUD%:  74.093911
8 : DATE: 2021-02-10 || CLOUD%:  32.880395
9 : DATE: 2021-02-07 || CLOUD%:  75.293885
Pick which product to download and process [0-9/n]: 0

Downloading: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1.09G/1.09G [03:30<00:00, 5.19MB/s]MD5 checksumming: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████| 1.09G/1.09G [00:04<00:00, 231MB/s]
0

Notice the clouds and water are masked out form the analysis.

Sentinel-2 Example 1 RGB Output Sentinel-2 Example 1 RGB Output

Example 2

Calling with low cloud tolerance to demonstrate limited selection.

docker run --rm -it -v <mount point>:/data <tag name> process-sentinel --creds /data/sat.yml --lat 49.12 --lng -126.5  --date 2021.03.18 --max-allowable-cloud 20 --max-allowable-cloud 20

0 : DATE: 2021-03-14 || CLOUD%:  17.49127
1 : DATE: 2021-02-05 || CLOUD%:  16.117952
2 : DATE: 2021-01-28 || CLOUD%:  2.606739
Pick which product to download and process [0-2/n]: