bearpaw / PyraNet

Code for "Learning Feature Pyramids for Human Pose Estimation" (ICCV 2017)
Apache License 2.0
221 stars 58 forks source link
human-pose-estimation

Learning Feature Pyramids for Human Pose Estimation

Training and testing code for the paper

Learning Feature Pyramids for Human Pose Estimation
Wei Yang, Shuang Li, Wanli Ouyang, Hongsheng Li, Xiaogang Wang
ICCV, 2017

This code is based on stacked hourglass networks and fb.resnet.torch. Thanks to the authors.

Install

  1. Install Torch.

  2. Install dependencies.

    luarocks install hdf5
    luarocks install matio
    luarocks install optnet
  3. (Optional) Install nccl for better performance when training with multi-GPUs.

    git clone https://github.com/NVIDIA/nccl.git
    cd nccl
    make 
    make install
    luarocks install nccl

    set LD_LIBRARY_PATH in file ~/.bashrc if libnccl.so is not found.

  4. Prepare dataset.
    Create a symbolic link to the images directory of the MPII dataset:

    ln -s PATH_TO_MPII_IMAGES_DIR data/mpii/images

    Create a symbolic link to the images directory of the LSP dataset (images are stored in PATH_TO_LSP_DIR/images):

    ln -s PATH_TO_LSP_DIR data/lsp/lsp_dataset

    Create a symbolic link to the images directory of the LSP extension dataset (images are stored in PATH_TO_LSPEXT_DIR/images):

    ln -s PATH_TO_LSPEXT_DIR data/lsp/lspet_dataset

Training and Testing

Quick Start

Testing from our pretrained model

Download our pretrained model to ./pretrained folder from Google Drive. Test on the MPII validation set by running the following command

qlua main.lua -batchSize 1 -nGPU 1 -nStack 8 -minusMean true -loadModel pretrained/model_250.t7 -testOnly true -debug true

Example

For multi-scale testing, run

qlua evalPyra.lua -batchSize 1 -nGPU 1 -nStack 8 -minusMean true -loadModel pretrained/model_250.t7 -testOnly true -debug true

Note:

Train a two-stack hourglass model

Train an example two-stack hourglass model on the MPII dataset with the proposed Pyramids Residual Modules (PRMs)

sh ./experiments/mpii/hg-prm-stack2.sh 

Customize your own training and testing procedure

A sample script for training on the MPII dataset with 8-stack hourglass model.

#!/usr/bin/env sh
expID=mpii/mpii_hg8   # snapshots and log file will save in checkpoints/$expID
dataset=mpii          # mpii | mpii-lsp | lsp |
gpuID=0,1             # GPUs visible to program
nGPU=2                # how many GPUs will be used to train the model
batchSize=16          
LR=6.7e-4
netType=hg-prm        # network architecture
nStack=2
nResidual=1
nThreads=4            # how many threads will be used to load data
minusMean=true
nClasses=16
nEpochs=200           
snapshot=10           # save models for every $snapshot

OMP_NUM_THREADS=1 CUDA_VISIBLE_DEVICES=$gpuID th main.lua \
   -dataset $dataset \
   -expID $expID \
   -batchSize $batchSize \
   -nGPU $nGPU \
   -LR $LR \
   -momentum 0.0 \
   -weightDecay 0.0 \
   -netType $netType \
   -nStack $nStack \
   -nResidual $nResidual \
   -nThreads $nThreads \
   -minusMean $minusMean \
   -nClasses $nClasses \
   -nEpochs $nEpochs \
   -snapshot $snapshot \
   # -resume checkpoints/$expID  \  # uncomment this line to resume training
   # -testOnly true \               # uncomment this line to test on validation data
   # -testRelease true \            # uncomment this line to test on test data (MPII dataset)

Evaluation

You may evaluate the PCKh score of your model on the MPII validation set. To get start, download our prediction pred_multiscale_250.h5 to ./pretrained from Google Drive, and run the MATLAB script evaluation/eval_PCKh.m. You'll get the following results

      Head , Shoulder , Elbow , Wrist , Hip , Knee  , Ankle , Mean , 
name , 97.41 , 96.16 , 91.10 , 86.88 , 90.05 , 86.00 , 83.89 , 90.27

Citation

If you find this code useful in your research, please consider citing:

@inproceedings{yang2017pyramid,
    Title = {Learning Feature Pyramids for Human Pose Estimation},
    Author = {Yang, Wei and Li, Shuang and Ouyang, Wanli and Li, Hongsheng and Wang, Xiaogang},
    Booktitle = {arXiv preprint arXiv:1708.01101},
    Year = {2017}
}