benchopt / benchmark_tv_1d

TV Denoising in 1D
2 stars 7 forks source link

Unidimensional Total variation (TV) Benchmark

|Build Status| |Python 3.6+|

This benchmark is dedicated to solver of TV-1D regularised regression problem:

$$\boldsymbol{u} \in \underset{\boldsymbol{u} \in \mathbb{R}^{p}}{\mathrm{argmin}} f(\boldsymbol{y}, A \boldsymbol{u}) + g(D\boldsymbol{u})$$

$$ h_{\delta}(t) = \begin{cases} \frac{1}{2} t^2 & \mathrm{ if } \vert t \vert \le \delta \\ \delta \vert t \vert - \frac{1}{2} \delta^2 & \mathrm{ otherwise} \end{cases} $$

$$g(D\boldsymbol{u}) = \lambda \| D \boldsymbol{u} \|_{1} = \lambda \sum\limits_{k = 1}^{p-1} \vert u_{k+1} - u_{k} \vert $$

where n (or n_samples) stands for the number of samples, p (or n_features) stands for the number of features.

Install

This benchmark can be run using the following commands:

.. code-block::

$ pip install -U benchopt $ git clone https://github.com/benchopt/benchmark_tv_1d $ benchopt run benchmark_tv_1d

Apart from the problem, options can be passed to benchopt run, to restrict the benchmarks to some solvers or datasets, e.g.:

.. code-block::

$ benchopt run benchmark_tv_1d --config benchmark_tv_1d/example_config.yml

Use benchopt run -h for more details about these options, or visit https://benchopt.github.io/api.html.

.. |Build Status| image:: https://github.com/benchopt/benchmark_tv_1d/workflows/Tests/badge.svg :target: https://github.com/benchopt/benchmark_tv_1d/actions .. |Python 3.6+| image:: https://img.shields.io/badge/python-3.6%2B-blue :target: https://www.python.org/downloads/release/python-360/