Retro: Learning Retrosynthetic Planning with Neural Guided A Search
@inproceedings{chen2020retro,
title={Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search},
author={Chen, Binghong and Li, Chengtao and Dai, Hanjun and Song, Le},
booktitle={The 37th International Conference on Machine Learning (ICML 2020)},
year={2020}
}
git clone git@github.com:binghong-ml/retro_star.git
cd retro_star
conda env create -f environment.yml
conda activate retro_star_env
Download and unzip the files from this link,
and put all the folders (dataset/
, one_step_model/
and saved_models/
) under the retro_star
directory.
Install the retrosynthetic planning library with the following commands.
pip install -e retro_star/packages/mlp_retrosyn
pip install -e retro_star/packages/rdchiral
pip install -e .
To plan with Retro*, run the following command,
cd retro_star
python retro_plan.py --use_value_fn
Ignore the --use_value_fn
option to plan without the learned value function.
You can also train your own value function via,
python train.py
See example.py
for an example usage.
from retro_star.api import RSPlanner
planner = RSPlanner(
gpu=-1,
use_value_fn=True,
iterations=100,
expansion_topk=50
)
result = planner.plan('CCCC[C@@H](C(=O)N1CCC[C@H]1C(=O)O)[C@@H](F)C(=O)OC')