Databroker
|build_status| |coverage| |pypi_version| |license|
Databroker is a data access tool built around the Bluesky Data Model
_.
The data it manages may be from ingested files, captured results of a
Python-based data analysis, or experimental data acquired using the Bluesky Run
Engine.
Databroker is developed in concert with Suitcase
. Suitcase does data
writing, and databroker does the reading. Databroker builds on Intake
, a
generic data access tool (outside of the Bluesky Project).
============== ==============================================================
PyPI pip install databroker
Conda conda install -c conda-forge databroker
Source code https://github.com/bluesky/databroker
Documentation https://blueskyproject.io/databroker
============== ==============================================================
The bundle of metadata and data looks like this, for example.
.. code:: python
run BlueskyRun uid='4a794c63-8223-4893-895e-d16e763188a8' exit_status='success' 2020-03-07 09:17:40.436 -- 2020-03-07 09:28:53.173 Streams:
- primary
- baseline
Additional user metadata beyond what is shown is stored in run.metadata
.
The bundle contains some number of logical tables of data ("streams"). They can
be accessed by name and read into a standard data structure from xarray
_.
.. code:: python
>>> run.primary.read()
<xarray.Dataset>
Dimensions: (time: 411)
Coordinates:
* time (time) float64 1.584e+09 1.584e+09 ... 1.584e+09
Data variables:
I0 (time) float64 13.07 13.01 12.95 ... 9.862 9.845
It (time) float64 11.52 11.47 11.44 ... 4.971 4.968
Ir (time) float64 10.96 10.92 10.88 ... 4.761 4.763
dwti_dwell_time (time) float64 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0
dwti_dwell_time_setpoint (time) float64 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0
dcm_energy (time) float64 1.697e+04 1.698e+04 ... 1.791e+04
dcm_energy_setpoint (time) float64 1.697e+04 1.698e+04 ... 1.791e+04
Common search queries can be done with a high-level Python interface.
.. code:: python
>>> from databroker.queries import TimeRange
>>> catalog.search(TimeRange(since="2020"))
Custom queries can be done with the MongoDB query language
_.
.. code:: python
>>> query = {
... "motors": {"$in": ["x", "y"]}, # scanning either x or y
... "temperature" {"$lt": 300}, # temperature less than 300
... "sample.element": "Ni",
... }
>>> catalog.search(query)
See the tutorials for more.
.. |build_status| image:: https://github.com/bluesky/databroker/workflows/Unit%20Tests/badge.svg?branch=master :target: https://github.com/bluesky/databroker/actions?query=workflow%3A%22Unit+Tests%22 :alt: Build Status
.. |coverage| image:: https://codecov.io/gh/bluesky/databroker/branch/master/graph/badge.svg :target: https://codecov.io/gh/bluesky/databroker :alt: Test Coverage
.. |pypi_version| image:: https://img.shields.io/pypi/v/databroker.svg :target: https://pypi.org/project/databroker :alt: Latest PyPI version
.. |license| image:: https://img.shields.io/badge/License-BSD%203--Clause-blue.svg :target: https://opensource.org/licenses/BSD-3-Clause :alt: BSD 3-Clause License
.. _xarray: https://xarray.pydata.org/
.. _MongoDB query language: https://docs.mongodb.com/manual/reference/operator/query/
.. _Bluesky Data Model: https://blueskyproject.io/event-model/main/user/explanations/data-model.html
.. _Suitcase: https://blueskyproject.io/suitcase/
.. _Intake: https://intake.readthedocs.io/en/latest/