bmcfee / pumpp

practically universal music pre-processor
ISC License
60 stars 11 forks source link
machine-learning music nyucds python

pumpp

GitHub license CI codecov Documentation Status

practically universal music pre-processor

pumpp up the jams

The goal of this package is to make it easy to convert pairs of (audio, jams) into data that can be easily consumed by statistical algorithms. Some desired features:

Example usage


>>> import jams
>>> import pumpp

>>> audio_f = '/path/to/audio/myfile.ogg'
>>> jams_f = '/path/to/annotations/myfile.jamz'

>>> # Set up sampling and frame rate parameters
>>> sr, hop_length = 44100, 512

>>> # Create a feature extraction object
>>> p_cqt = pumpp.feature.CQT(name='cqt', sr=sr, hop_length=hop_length)

>>> # Create some annotation extractors
>>> p_beat = pumpp.task.BeatTransformer(sr=sr, hop_length=hop_length)
>>> p_chord = pumpp.task.SimpleChordTransformer(sr=sr, hop_length=hop_length)

>>> # Collect the operators in a pump
>>> pump = pumpp.Pump(p_cqt, p_beat, p_chord)

>>> # Apply the extractors to generate training data
>>> data = pump(audio_f=audio_f, jam=jams_fjams_f)

>>> # Or test data
>>> test_data = pump(audio_f='/my/test/audio.ogg')

>>> # Or in-memory
>>> y, sr = librosa.load(audio_f)
>>> test_data = pump(y=y, sr=sr)