zapret является свободным и open source. Всякий, кто понуждает вас скачивать zapret только с его ресурса, требует удалить ссылки, видео, файлы, обосновывая эти требования авторскими правами, сам нарушает лицензию.
Автономное средство противодействия DPI, которое не требует подключения каких-либо сторонних серверов. Может помочь обойти блокировки или замедление сайтов http(s), сигнатурный анализ tcp и udp протоколов, например с целью блокировки VPN.
Проект нацелен прежде всего на маломощные embedded устройства - роутеры, работающие под openwrt. Поддерживаются традиционные Linux системы, FreeBSD, OpenBSD, частично MacOS. В некоторых случаях возможна самостоятельная прикрутка решения к различным прошивкам.
Большая часть функционала работает на windows.
В самом простейшем случае вы имеете дело с пассивным DPI. Пассивный DPI может читать трафик из потока, может инжектить свои пакеты, но не может блокировать проходящие пакеты. Если запрос "плохой", пассивный DPI инжектит пакет RST, опционально дополняя его пакетом http redirect. Если фейк пакет инжектится только для клиента, в этом случае можно обойтись командами iptables для дропа RST и/или редиректа на заглушку по определенным условиям, которые нужно подбирать для каждого провайдера индивидуально. Так мы обходим последствия срабатывания триггера запрета. Если пассивный DPI направляет пакет RST в том числе и серверу, то вы ничего с этим не сможете сделать. Ваша задача - не допустить срабатывания триггера запрета. Одними iptables уже не обойдетесь. Этот проект нацелен именно на предотвращение срабатывания запрета, а не ликвидацию его последствий.
Активный DPI ставится в разрез провода и может дропать пакеты по любым критериям, в том числе распознавать TCP потоки и блокировать любые пакеты, принадлежащие потоку.
Как не допустить срабатывания триггера запрета ? Послать то, на что DPI не рассчитывает и что ломает ему алгоритм распознавания запросов и их блокировки.
Некоторые DPI не могут распознать http запрос, если он разделен на TCP сегменты. Например, запрос
вида GET / HTTP/1.1\r\nHost: kinozal.tv......
мы посылаем 2 частями : сначала идет GET
, затем / HTTP/1.1\r\nHost: kinozal.tv.....
. Другие DPI спотыкаются, когда
заголовок Host:
пишется в другом регистре : например,host:
. Кое-где работает добавление дополнительного пробела
после метода : GET /
=> GET /
или добавление точки в конце имени хоста : Host: kinozal.tv.
Существует и более продвинутая магия, направленная на преодоление DPI на пакетном уровне.
Подробнее про DPI:\ https://habr.com/ru/post/335436 или https://web.archive.org/web/20230331233644/https://habr.com/ru/post/335436/ \ https://geneva.cs.umd.edu/papers/geneva_ccs19.pdf
Раньше, до внедрения повсеместных систем ТСПУ, использовался зоопарк различных DPI у провайдеров. Какие-то были активными, какие-то пассивными. Сейчас время простых iptables окончательно ушло. Везде активный DPI ТСПУ, но кое-где могут оставаться невыключенными дополнительные старые DPI из зоопарка. В этом случае приходится обходить сразу несколько DPI. Все больше становится внереестровых блокировок, о которых вы узнаете только по факту недоступности чего-либо, в списках этого нет. Применяются блокировки некоторых диапазонов ip адресов (автономный обход невозможен) и протоколов (VPN). На некоторых диапазонах IP используется более строгий фильтр, распознающий попытки обмана через сегментацию. Должно быть это связано с некоторыми сервисами, которые пытаются таким образом обмануть DPI.
Если кратко, то варианты можно классифицировать по следующей схеме :
1) Пассивный DPI, не отправляющий RST серверу. Помогут индивидуально настраиваемые под провайдера команды iptables. На rutracker в разделе "обход блокировок - другие способы" по этому вопросу существует отдельная тема. В данном проекте не рассматривается. Если вы не допустите срабатывание триггера запрета, то и не придется бороться с его последствиями. 2) Модификация TCP соединения на уровне потока. Реализуется через proxy или transparent proxy. 3) Модификация TCP соединения на уровне пакетов. Реализуется через обработчик очереди NFQUEUE и raw сокеты.
Для вариантов 2 и 3 реализованы программы tpws и nfqws соответственно. Чтобы они работали, необходимо их запустить с нужными параметрами и перенаправить на них определенный трафик средствами iptables или nftables.
Эта программа - модификатор пакетов и обработчик очереди NFQUEUE. Для BSD систем существует адаптированный вариант - dvtws, собираемый из тех же исходников (см. документация BSD).
@<config_file>|$<config_file> ; читать конфигурацию из файла. опция должна быть первой. остальные опции игнорируются.
--debug=0|1 ; 1=выводить отладочные сообщения
--daemon ; демонизировать прогу
--pidfile=<file> ; сохранить PID в файл
--user=<username> ; менять uid процесса
--uid=uid[:gid] ; менять uid процесса
--qnum=N ; номер очереди N
--bind-fix4 ; пытаться решить проблему неверного выбора исходящего интерфейса для сгенерированных ipv4 пакетов
--bind-fix6 ; пытаться решить проблему неверного выбора исходящего интерфейса для сгенерированных ipv6 пакетов
--wsize=<winsize>[:<scale_factor>] ; менять tcp window size на указанный размер в SYN,ACK. если не задан scale_factor, то он не меняется (устарело !)
--wssize=<winsize>[:<scale_factor>] ; менять tcp window size на указанный размер в исходящих пакетах. scale_factor по умолчанию 0. (см. conntrack !)
--wssize-cutoff=[n|d|s]N ; изменять server window size в исходящих пакетах (n), пакетах данных (d), относительных sequence (s) по номеру меньше N
--ctrack-timeouts=S:E:F[:U] ; таймауты внутреннего conntrack в состояниях SYN, ESTABLISHED, FIN, таймаут udp. по умолчанию 60:300:60:60
--hostcase ; менять регистр заголовка "Host:" по умолчанию на "host:".
--hostnospace ; убрать пробел после "Host:" и переместить его в конец значения "User-Agent:" для сохранения длины пакета
--hostspell=HoST ; точное написание заголовка Host (можно "HOST" или "HoSt"). автоматом включает --hostcase
--domcase ; домен после Host: сделать таким : TeSt.cOm
--dpi-desync=[<mode0>,]<mode>[,<mode2] ; атака по десинхронизации DPI. mode : synack syndata fake fakeknown rst rstack hopbyhop destopt ipfrag1 multisplit multidisorder fakedsplit fakeddisorder ipfrag2 udplen tamper
--dpi-desync-fwmark=<int|0xHEX> ; бит fwmark для пометки десинхронизирующих пакетов, чтобы они повторно не падали в очередь. default = 0x40000000
--dpi-desync-ttl=<int> ; установить ttl для десинхронизирующих пакетов
--dpi-desync-ttl6=<int> ; установить ipv6 hop limit для десинхронизирующих пакетов. если не указано, используется значение ttl
--dpi-desync-autottl=[<delta>[:<min>[-<max>]]] ; режим auto ttl для ipv4 и ipv6. по умолчанию: 1:3-20. delta=0 отключает функцию.
--dpi-desync-autottl6=[<delta>[:<min>[-<max>]]] ; переопределение предыдущего параметра для ipv6
--dpi-desync-fooling=<fooling> ; дополнительные методики как сделать, чтобы фейковый пакет не дошел до сервера. none md5sig badseq badsum datanoack hopbyhop hopbyhop2
--dpi-desync-repeats=<N> ; посылать каждый генерируемый в nfqws пакет N раз (не влияет на остальные пакеты)
--dpi-desync-skip-nosni=0|1 ; 1(default)=не применять dpi desync для запросов без hostname в SNI, в частности для ESNI
--dpi-desync-split-pos=N|-N|marker+N|marker-N ; список через запятую маркеров для tcp сегментации в режимах split и disorder
--dpi-desync-split-seqovl=N|-N|marker+N|marker-N ; единичный маркер, определяющий величину перекрытия sequence в режимах split и disorder. для split поддерживается только положительное число.
--dpi-desync-split-seqovl-pattern=<filename>|0xHEX ; чем заполнять фейковую часть overlap
--dpi-desync-badseq-increment=<int|0xHEX> ; инкремент sequence number для badseq. по умолчанию -10000
--dpi-desync-badack-increment=<int|0xHEX> ; инкремент ack sequence number для badseq. по умолчанию -66000
--dpi-desync-any-protocol=0|1 ; 0(default)=работать только по http request и tls clienthello 1=по всем непустым пакетам данных
--dpi-desync-fake-http=<filename>|0xHEX ; файл, содержащий фейковый http запрос для dpi-desync=fake, на замену стандартному www.iana.org
--dpi-desync-fake-tls=<filename>|0xHEX ; файл, содержащий фейковый tls clienthello для dpi-desync=fake, на замену стандартному
--dpi-desync-fake-unknown=<filename>|0xHEX ; файл, содержащий фейковый пейлоад неизвестного протокола для dpi-desync=fake, на замену стандартным нулям 256 байт
--dpi-desync-fake-syndata=<filename>|0xHEX ; файл, содержащий фейковый пейлоад пакета SYN для режима десинхронизации syndata
--dpi-desync-fake-quic=<filename>|0xHEX ; файл, содержащий фейковый QUIC Initial
--dpi-desync-fake-dht=<filename>|0xHEX ; файл, содержащий фейковый пейлоад DHT протокола для dpi-desync=fake, на замену стандартным нулям 64 байт
--dpi-desync-fake-unknown-udp=<filename>|0xHEX ; файл, содержащий фейковый пейлоад неизвестного udp протокола для dpi-desync=fake, на замену стандартным нулям 64 байт
--dpi-desync-udplen-increment=<int> ; насколько увеличивать длину udp пейлоада в режиме udplen
--dpi-desync-udplen-pattern=<filename>|0xHEX ; чем добивать udp пакет в режиме udplen. по умолчанию - нули
--dpi-desync-start=[n|d|s]N ; применять dpi desync только в исходящих пакетах (n), пакетах данных (d), относительных sequence (s) по номеру больше или равно N
--dpi-desync-cutoff=[n|d|s]N ; применять dpi desync только в исходящих пакетах (n), пакетах данных (d), относительных sequence (s) по номеру меньше N
--hostlist=<filename> ; действовать только над доменами, входящими в список из filename. поддомены автоматически учитываются.
; в файле должен быть хост на каждой строке.
; список читается при старте и хранится в памяти в виде иерархической структуры для быстрого поиска.
; при изменении времени модификации файла он перечитывается автоматически по необходимости
; список может быть запакован в gzip. формат автоматически распознается и разжимается
; списков может быть множество. пустой общий лист = его отсутствие
; хосты извлекаются из Host: хедера обычных http запросов и из SNI в TLS ClientHello.
--hostlist-exclude=<filename> ; не применять дурение к доменам из листа. может быть множество листов. схема аналогична include листам.
--hostlist-auto=<filename> ; обнаруживать автоматически блокировки и заполнять автоматический hostlist (требует перенаправления входящего трафика)
--hostlist-auto-fail-threshold=<int> ; сколько раз нужно обнаружить ситуацию, похожую на блокировку, чтобы добавить хост в лист (по умолчанию: 3)
--hostlist-auto-fail-time=<int> ; все эти ситуации должны быть в пределах указанного количества секунд (по умолчанию: 60)
--hostlist-auto-retrans-threshold=<int> ; сколько ретрансмиссий запроса считать блокировкой (по умолчанию: 3)
--hostlist-auto-debug=<logfile> ; лог положительных решений по autohostlist. позволяет разобраться почему там появляются хосты.
--new ; начало новой стратегии (новый профиль)
--filter-l3=ipv4|ipv6 ; фильтр версии ip для текущей стратегии
--filter-tcp=[~]port1[-port2]|* ; фильтр портов tcp для текущей стратегии. ~ означает инверсию. установка фильтра tcp и неустановка фильтра udp запрещает udp. поддерживается список через запятую.
--filter-udp=[~]port1[-port2]|* ; фильтр портов udp для текущей стратегии. ~ означает инверсию. установка фильтра udp и неустановка фильтра tcp запрещает tcp. поддерживается список через запятую.
--filter-l7=[http|tls|quic|wireguard|dht|unknown] ; фильтр протокола L6-L7. поддерживается несколько значений через запятую.
--ipset=<filename> ; включающий ip list. на каждой строчке ip или cidr ipv4 или ipv6. поддерживается множество листов и gzip. перечитка автоматическая.
--ipset-exclude=<filename> ; исключающий ip list. на каждой строчке ip или cidr ipv4 или ipv6. поддерживается множество листов и gzip. перечитка автоматическая.
--debug
позволяет выводить подробный лог действий на консоль, в syslog или в файл. Может быть важен порядок следования
опций. --debug
лучше всего указывать в самом начале. Опции анализируются последовательно. Если ошибка будет при
проверке опции, а до анализа --debug
еще дело не дошло, то сообщения не будут выведены в файл или syslog. При
логировании в файл процесс не держит файл открытым. Ради каждой записи файл открывается и потом закрывается. Так что
файл можно удалить в любой момент, и он будет создан заново при первом же сообщении в лог. Но имейте в виду, что если вы
запускаете процесс под root, то будет сменен UID на не-root. В начале на лог файл меняется owner, иначе запись будет
невозможна. Если вы потом удалите файл, и у процесса не будет прав на создание файла в его директории, лог больше не
будет вестись. Вместо удаления лучше использовать truncate. В шелле это можно сделать через команду ": >filename"
Суть ее в следующем. Берется оригинальный запрос, модифицируется, добавляется поддельная информация (фейки) таким образом, чтобы ОС сервера передала серверному процессу оригинальный запрос в неизменном виде, а DPI увидел другое. То, что он блокировать не станет. Сервер видит одно, DPI - другое. DPI не понимает, что передается запрещенный запрос и не блокирует его.
Есть арсенал возможностей, чтобы достичь такого результата. Это может быть передача фейк пакетов, чтобы они дошли до DPI, но не дошли до сервера. Может использоваться фрагментация на уровне TCP (сегментация) или на уровне IP. Есть атаки, основанные на игре с tcp sequence numbers или с перепутыванием порядка следования tcp сегментов. Методы могут сочетаться в различных вариантах.
Фейки - это отдельные сгенерированные nfqws пакеты, несущие ложную информацию для DPI. Они либо не должны дойти до сервера, либо могут дойти, но должны быть им отброшены. Иначе получается слом tcp соединения или нарушение целостности передаваемого потока, что гарантированно приводит к поломке ресурса. Есть ряд методов для решения этой задачи.
md5sig
добавляет TCP опцию MD5 signature. Работает не на всех серверах. Пакеты с md5 обычно отбрасывают только linux.badsum
портит контрольную сумму TCP. Не сработает, если ваше устройство за NAT, который не пропускает пакеты с инвалидной суммой. Наиболее
распространенная настройка NAT роутера в Linux их не пропускает. На Linux построено большинство домашних роутеров.
Непропускание обеспечивается так : настройка ядра sysctl по умолчанию
net.netfilter.nf_conntrack_checksum=1
заставляет conntrack проверять tcp и udp чексуммы входящих пакетов и
выставлять state INVALID для пакетов с инвалидной суммой. Обычно в правилах iptables вставляется правило для дропа
пакетов с состоянием INVALID в цепочке FORWARD. Совместное сочетание этих факторов приводит к непрохождению badsum
через такой роутер. В openwrt из коробки net.netfilter.nf_conntrack_checksum=0
, в других роутерах часто нет, и не
всегда это можно изменить. Чтобы nfqws мог работать через роутер, нужно на нем выставить указанное значение sysctl в 0.
nfqws на самом роутере будет работать и без этой настройки, потому что чексумма локально созданных пакетов не
проверяется никогда. Если роутер за другим NAT, например провайдерским, и он не пропускает invalid packets вы ничего
не сможете с этим сделать. Но обычно провайдеры все же пропускают badsum. На некоторых адаптерах/свитчах/драйверах
принудительно включен rx-checksum offload, badsum пакеты отсекаются еще до получения в ОС. В этом случае если что-то и
можно сделать, то только модифицировать драйвер, что представляется задачей крайне нетривиальной. Установлено, что так
себя ведут некоторые роутеры на базе mediatek. badsum пакеты уходят с клиентской ОС, но роутером не видятся в br-lan
через tcpdump. При этом если nfqws выполняется на самом роутере, обход может работать. badsum нормально уходят с
внешнего интерфейса.badseq
увеличивает TCP sequence number на определенное значение, выводя его тем самым из TCP window.
Такие пакеты будут наверняка отброшены принимающим узлом, но так же и DPI, если он ориентируется на sequence
numbers. По умолчанию смещение seq выбирается -10000. Практика показала, что некоторые DPI не пропускают seq вне
определенного окна. Однако, такое небольшое смещение может вызвать проблемы при существенной потоковой передаче и
потере пакетов. Если вы используете --dpi-desync-any-protocol
, может понадобится установить badseq increment
0x80000000. Это обеспечит надежную гарантию, что поддельный пакет не вклинится в tcp window на сервере. Так же было
замечено, что badseq ломает логику некоторых DPI при анализе http, вызывая зависание соединения. Причем на тех же DPI
TLS с badseq работает нормально.TTL
казалось бы - лучший вариант, но он требует индивидуальной настройки под каждого провайдера. Если DPI находится
дальше локальных сайтов провайдера, то вы можете отрезать себе доступ к ним. Ситуация усугубляется наличием ТСПУ на
магистралах, что вынуждает делать TTL достаточно высоким, увеличивая риск пробоя фейка до сервера. Необходим ip
exclude list, заполняемый вручную. Вместе с ttl можно применять md5sig. Это ничего не испортит, зато дает неплохой
шанс работы сайтов, до которых "плохой" пакет дойдет по TTL. Если не удается найти автоматическое решение,
воспользуйтесь файлом zapret-hosts-user-exclude.txt
. Некоторые стоковые прошивки роутеров фиксируют исходящий TTL,
без отключения этой опции через них работать не будет. КАКИМ СТОИТ ВЫБИРАТЬ TTL : найдите минимальное значение, при
котором обход еще работает. Это и будет номер хопа вашего DPI.hopbyhop
относится только к ipv6. Добавляется ipv6 extenstion header hop-by-hop options
. В варианте hopbyhop2
добавляются 2 хедера, что является нарушением стандарта и гарантированно отбрасывается стеком протоколов во всех ОС.
Один хедер hop-by-hop принимается всеми ОС, однако на некоторых каналах/провайдерах такие пакеты могут фильтроваться и
не доходить. Расчет идет на то, что DPI проанализирует пакет с hop-by-hop, но он либо не дойдет до адресата всилу
фильтров провайдера, либо будет отброшен сервером, потому что хедера два.datanoack
высылает фейки со снятым tcp флагом ACK. Сервера такое не принимают, а DPI может принять. Эта техника
может ломать NAT и не всегда работает с iptables, если используется masquerade, даже с локальной системы (почти всегда
на роутерах ipv4). На системах c iptables без masquerade и на nftables работает без ограничений. Экспериментально
выяснено, что многие провайдерские NAT не отбрасывают эти пакеты, потому работает даже с внутренним провайдерским IP.
Но linux NAT оно не пройдет, так что за домашним роутером эта техника скорее всего не сработает, но может сработать с него.
Может сработать и через роутер, если подключение по проводу, и на роутере включено аппаратное ускорение.autottl
. Суть режима в автоматическом определении TTL, чтобы он почти наверняка прошел DPI и немного не дошел до
сервера. Берутся базовые значения TTL 64,128,255, смотрится входящий пакет
(да, требуется направить первый входящий пакет на nfqws !). Вычисляется длина пути, отнимается delta
(1 по
умолчанию). Если TTL вне диапазона (min,max - 3,20 по умолчанию), то берутся значения min,max, чтобы вписаться в
диапазон. Если при этом полученный TTL больше длины пути, то автоматизм не сработал и берутся фиксированные значения
TTL для атаки. Техника позволяет решить вопрос, когда вся сеть перегорожена шлагбаумами (DPI, ТСПУ) везде где только
можно, включая магистралов. Но потенциально может давать сбои. Например, при асимметрии входящего и исходящего канала
до конкретного сервера. На каких-то провайдерах эта техника будет работать неплохо, на других доставит больше проблем,
чем пользы. Где-то может потребоваться тюнинг параметров. Лучше использовать с дополнительным ограничителем.Режимы дурения могут сочетаться в любых комбинациях. --dpi-desync-fooling
берет множество значений через запятую.
multisplit
. нарезаем запрос на указанных в --dpi-desync-split-pos
позициях.multidisorder
. нарезаем запрос на указанных в --dpi-desync-split-pos
позициях и отправляем в обратном порядке.fakedsplit
. нарезаем запрос на 2 части, обрамляя его фейками : фейк 1-й части, 1 часть, фейк 1-й части, 2 частьfakeddisorder
. нарезаем запрос на 2 части, обрамляя его фейками : 2 часть, фейк 1-й части, 1 часть, фейк 1 части.Для определения позиций нарезки используются маркеры.
Относительные позиции :
--methodeol
от tpws. Тогда позиция может стать 1 или 2.Пример списка маркеров : 100,midsld,sniext+1,endhost-2,-10
.
При разбиении пакета первым делом происходит ресолвинг маркеров - нахождение всех указанных относительных позиций и применение смещений.
Если относительная позиция отсутствует в текущем протоколе, такие позиции не применяются и отбрасываются.
Дальше происходит нормализация позиций относительно смещения текущего пакета в группе пакетов (многопакетные запросы TLS с kyber, например).
Выкидываются все позиции, выходящие за пределы текущего пакета. Оставшиеся сортируются в порядке возрастания и удаляются дубли.
В вариантах multisplit
и multidisorder
если не осталось ни одной позиции, разбиение не происходит.
Варианты fakedsplit
и fakeddisorder
применяют только одну позицию сплита. Ее поиск среди списка --dpi-desync-split-pos
осуществляется особым образом.
Сначала сверяются все относительные маркеры. Если среди них найден подходящий, применяется он. В противном случае сверяются все абсолютные маркеры.
Если и среди них ничего не найдено, применяется позиция 1.
Например, можно написать --dpi-desync-split-pos=method+2,midsld,5
. Если протокол http, разбиение будет на позиции method+2
.
Если протокол TLS - на позиции midsld
. Если протокол неизвестен и включено --dpi-desync-any-protocol
, разбиение будет на позиции 5.
Чтобы все было однозначнее, можно использовать разные профили для разных протоколов и указывать только одну позицию, которая точно есть в этом протоколе.
seqovl
добавляет в начало одного из TCP сегментов seqovl
байт со смещенным в минус sequence number на величину seqovl
.
Для split
- в начало первого сегмента, для disorder
- в начало предпоследнего отсылаемого сегмента (второго в оригинальном порядке следования).
В случае split
расчет идет на то, что предыдущий отсыл, если он был, уже попал в сокет серверного приложения, поэтому новая пришедшая часть лишь частично находится в
пределах текущего окна (in-window). Спереди фейковая часть отбрасывается, а оставшаяся часть содержит оригинал и
начинается с начала window, поэтому попадает в сокет. Серверное приложение получает все, что реально отсылает клиент,
отбрасывая фейковую out-of-window часть. Но DPI не может этого понять, поэтому у него происходит sequence десинхронизация.
Обязательно, чтобы первый сегмент вместе с seqovl
не превысили длину MTU. Эта ситуация распознается автоматически в Linux, и seqovl
отменяется.
В остальных системах ситуация не распознается, и это приведет к поломке соединения. Поэтому выбирайте первую позицию сплита и seqovl
таким образом, чтобы MTU не был превышен в любом случае.
Иначе дурение может не работать или работать хаотично.
Для disorder
overlap идет на предпоследнюю отсылаемую часть пакета.
Для простоты будем считать, что разбиение идет на 2 части, шлются они в порядке "2 1" при оригинальном порядке "1 2".
Обязательно, чтобы seqovl
был меньше позиции первого сплита, иначе все отосланное будет передано в сокет сразу же, включая фейк, ломая протокол прикладного уровня.
Такая ситуация легко обнаруживается программой, и seqovl
отменяется. Увеличение размера пакета невозможно в принципе.
При соблюдении условия 2-я часть пакета является полностью in-window, поэтому серверная ОС принимает ее целиком, включая фейк.
Но поскольку начальная часть данных из 1 пакета еще не принята, то фейк и реальные данные остаются в памяти ядра, не отправляясь в серверное приложение.
Как только приходит 1-я часть пакета, она переписывает фейковую часть в памяти ядра.
Ядро получает данные из 1 и 2 части, поэтому далее идет отправка в сокет приложения.
Таково поведение всех unix ОС, кроме solaris - оставлять последние принятые данные.
Windows оставляет старые данные, поэтому disorder с seqovl будет приводить к зависаниям соединения
при работе с Windows серверами. Solaris практически мертв, windows серверов очень немного.
Можно использовать листы при необходимости.
Метод позволяет обойтись без fooling и TTL. Фейки перемешаны с реальным данными.
fakedsplit/fakeddisorder
по-прежнему добавляют дополнительные отдельные фейки.
seqovl
в варианте split
может быть только абсолютным положительным значением, поскольку применяется только в первому пакету.
В варианте disorder
допустимо применение всех вариантов маркеров.
Они автоматически нормализуются к текущему пакету в серии. Можно сплитать на midsld
и делать seqovl на midsld-1
.
Режимы десинхронизации hopbyhop
, destopt
и ipfrag1
(не путать с fooling !) относятся только к ipv6 и заключается
в добавлении хедера hop-by-hop options
, destination options
или fragment
во все пакеты, попадающие под десинхронизацию.
Здесь надо обязательно понимать, что добавление хедера увеличивает размер пакета, потому не может быть применено
к пакетам максимального размера. Это имеет место при передаче больших сообщений.
В случае невозможности отослать пакет дурение будет отменено, пакет будет выслан в оригинале.
Расчет идет на то, что DPI увидит 0 в поле next header основного заголовка ipv6
и не будет скакать по
extension хедерам в поисках транспортного хедера. Таким образом не поймет, что это tcp или udp, и пропустит пакет
без анализа. Возможно, какие-то DPI на это купятся.
Может сочетаться с любыми режимами 2-й фазы, кроме варианта ipfrag1+ipfrag2
.
Например, hopbyhop,multisplit
означает разбить tcp пакет на несколько сегментов, в каждый из них добавить hop-by-hop.
При hopbyhop,ipfrag2
последовательность хедеров будет : ipv6,hop-by-hop
,fragment
,tcp/udp
.
Режим ipfrag1
может срабатывать не всегда без специальной подготовки. См. раздел IP фрагментация
.
В параметре dpi-desync можно указать до 3 режимов через запятую.
synack
, syndata
, --wsize
, --wssize
. На эту фазу не действуют фильтры по hostlist.fake
, rst
, rstack
.fakedsplit
или ipfrag2
).Режимы требуют указания в порядке возрастания номеров фаз.
Есть DPI, которые анализируют ответы от сервера, в частности сертификат из ServerHello, где прописаны домены. Подтверждением доставки ClientHello является ACK пакет от сервера с номером ACK sequence, соответствующим длине ClientHello+1. В варианте disorder обычно приходит сперва частичное подтверждение (SACK), потом полный ACK. Если вместо ACK или SACK идет RST пакет с минимальной задержкой, то DPI вас отсекает еще на этапе вашего запроса. Если RST идет после полного ACK спустя задержку, равную примерно пингу до сервера, тогда вероятно DPI реагирует на ответ сервера. DPI может отстать от потока, если ClientHello его удовлетворил и не проверять ServerHello. Тогда вам повезло. Вариант fake может сработать. Если же он не отстает и упорно проверяет ServerHello, то можно попробовать заставить сервер высылать ServerHello частями через параметр --wssize (см. conntrack). Если и это не помогает, то сделать с этим что-либо вряд ли возможно без помощи со стороны сервера. Лучшее решение - включить на сервере поддержку TLS 1.3. В нем сертификат сервера передается в зашифрованном виде. Это рекомендация ко всем админам блокируемых сайтов. Включайте TLS 1.3. Так вы дадите больше возможностей преодолеть DPI.
В документации по geneva это называется "TCB turnaround". Попытка ввести DPI в заблуждение относительно ролей клиента и сервера.
Поскольку режим нарушает работу NAT, техника может сработать только если между атакующим устройством и DPI нет NAT. Атака не сработает через NAT роутер, но может сработать с него. Для реализации атаки на проходящий трафик требуются nftables и схема POSTNAT.
Тут все просто. Добавляются данные в пакет SYN. Все ОС их игнорируют, если не используется TCP fast open (TFO), а DPI может воспринять, не разобравшись есть там TFO или нет. Оригинальные соединения с TFO не трогаются, поскольку это их точно сломает. Без уточняющего параметра добавляются 16 нулевых байтов.
Изнутри VM от virtualbox и vmware в режиме NAT не работают многие техники пакетной магии nfqws. Принудительно заменяется ttl, не проходят фейк пакеты. Необходимо настроить сеть в режиме bridge.
nfqws оснащен ограниченной реализацией слежения за состоянием tcp соединений (conntrack).
Он включается для реализации некоторых методов противодействия DPI.
conntrack способен следить за фазой соединения : SYN,ESTABLISHED,FIN, количеством пакетов в каждую сторону,
sequence numbers. conntrack способен "кормиться" пакетами в обе или только в одну сторону.
Соединение попадает в таблицу при обнаружении пакетов с выставленными флагами SYN или SYN,ACK.
Поэтому если необходим conntrack, в правилах перенаправления iptables соединение должно идти на nfqws с самого первого
пакета, хотя затем может обрываться по фильтру connbytes.
Для UDP инициатором попадания в таблицу является первый UDP пакет. Он же и определяет направление потока.
Считается, что первый UDP пакет исходит от клиента к серверу. Далее все пакеты с совпадающими
src_ip,src_port,dst_ip,dst_port
считаются принадлежащими этому потоку до истечения времени неактивности.
conntrack - простенький, он не писался с учетом всевозможных атак на соединение, он не проверяет
пакеты на валидность sequence numbers или чексумму. Его задача - лишь обслуживание нужд nfqws, он обычно
кормится только исходящим трафиком, потому нечувствителен к подменам со стороны внешней сети.
Соединение удаляется из таблицы, как только отпадает нужда в слежении за ним или по таймауту неактивности.
Существуют отдельные таймауты на каждую фазу соединения. Они могут быть изменены параметром --ctrack-timeouts
.
--wssize
позволяет изменить с клиента размер tcp window для сервера, чтобы он послал следующие ответы разбитыми на части.
Чтобы это подействовало на все серверные ОС, необходимо менять window size в каждом исходящем с клиента пакете до отсылки сообщения,
ответ на которое должен быть разбит (например, TLS ClientHello). Именно поэтому и необходим conntrack, чтобы
знать когда надо остановиться. Если не остановиться и все время устанавливать низкий wssize, скорость упадет катастрофически.
В linux это может быть купировано через connbytes, но в BSD системах такой возможности нет.
В случае http(s) останавливаемся сразу после отсылки первого http запроса или TLS ClientHello.
Если вы имеете дело с не http(s), то вам потребуется параметр --wssize-cutoff
. Он устанавливает предел, с которого действие
wssize прекращается. Префикс d перед номером означает учитывать только пакеты с data payload, префикс s - relative sequence number,
проще говоря количество переданных клиентом байтов + 1.
Если проскочит пакет с http request или TLS ClientHello, действие wssize прекращается сразу же, не дожидаясь wssize-cutoff.
Если ваш протокол склонен к долгому бездействию, следует увеличить таймаут фазы ESTABLISHED через параметр --ctrack-timeouts
.
Таймаут по умолчанию низкий - всего 5 минут.
Не забывайте, что nfqws кормится приходящими на него пакетами. Если вы ограничили поступление пакетов через connbytes,
то в таблице могут остаться повисшие соединения в фазе ESTABLISHED, которые отвалятся только по таймауту.
Для диагностики состояния conntrack пошлите сигнал SIGUSR1 процессу nfqws : killall -SIGUSR1 nfqws
.
Текущая таблица будет выведена nfqws в stdout.
Обычно в SYN пакете клиент отсылает кроме window size еще и TCP extension scaling factor
.
scaling factor представляет из себя степень двойки, на которую умножается window size : 0=>1, 1=>2, 2=>4, ..., 8=>256, ...
В параметре wssize scaling factor указывается через двоеточие.
Scaling factor может только снижаться, увеличение заблокировано, чтобы не допустить превышение размера окна со стороны сервера.
Для принуждения сервера к фрагментации ServerHello, чтобы избежать просекание имени сервера из сертификата сервера на DPI,
лучше всего использовать --wssize=1:6
. Основное правило - делать scale_factor
как можно больше, чтобы после восстановления
window size итоговый размер окна стал максимально возможным. Если вы сделаете 64:0, будет очень медленно.
С другой стороны нельзя допустить, чтобы ответ сервера стал достаточно большим, чтобы DPI нашел там искомое.
--wssize
не работает в профилях с хостлистами, поскольку он действует с самого начала соединения, когда еще нельзя
принять решение о попадании в лист. Однако, профиль с auto hostlist может содержать --wssize.
--wssize
может замедлять скорость и/или увеличивать время ответа сайтов, поэтому если есть другие работающие способы
обхода DPI, лучше применять их.
--dpi-desync-cutoff
позволяет задать предел, при достижении которого прекращается применение dpi-desync.
Доступны префиксы n,d,s по аналогии с --wssize-cutoff
.
Полезно совместно с --dpi-desync-any-protocol=1
.
На склонных к бездействию соединениях следует изменить таймауты conntrack.
Если соединение выпало из conntrack и задана опция --dpi-desync-cutoff
, dpi desync
применяться не будет.
nfqws поддерживает реассемблинг некоторых видов запросов. На текущий момент это TLS и QUIC ClientHello. Они бывает длинными, если в chrome включить пост-квантовую криптографию tls-kyber, и занимают как правило 2 или 3 пакета. kyber включен по умолчанию, начиная с chromium 124. chrome рандомизирует фингерпринт TLS. SNI может оказаться как в начале, так и в конце, то есть попасть в любой пакет. stateful DPI обычно реассемблирует запрос целиком, и только потом принимает решение о блокировке. В случае получения TLS или QUIC пакета с частичным ClientHello начинается процесс сборки, а пакеты задерживаются и не отсылаются до ее окончания. По окончании сборки пакеты проходит через десинхронизацию на основании полностью собранного ClientHello. При любой ошибке в процессе сборки задержанные пакеты немедленно отсылаются в сеть, а десинхронизация отменяется.
Есть специальная поддержка всех вариантов tcp сплита для многосегментного TLS.
Если указать позицию сплита больше длины первого пакета, то разбивка происходит не обязательно первого пакета, а того,
на который пришлась итоговая позиция.
Если, допустим, клиент послал TLS ClientHello длиной 2000, SNI начинается с 1700,
и заданы опции fake,multisplit
, то перед первым пакетом идет fake, затем первый пакет в оригинале,
а последний пакет разбивается на 2 сегмента. В итоге имеем фейк в начале и 3 реальных сегмента.
Атаки на udp более ограничены в возможностях. udp нельзя фрагментировать иначе, чем на уровне ip.
Для UDP действуют только режимы десинхронизации fake
, hopbyhop
, destopt
, ipfrag1
, ipfrag2
, udplen
, tamper
.
Возможно сочетание fake
, hopbyhop
, destopt
с ipfrag2
, fake
, fakeknown
с udplen и tamper.
udplen
увеличивает размер udp пакета на указанное в --dpi-desync-udplen-increment
количество байтов.
Паддинг заполняется нулями по умолчанию, но можно задать свой паттерн.
Предназначено для обмана DPI, ориентирующегося на размеры пакетов.
Может сработать, если пользовательский протокол не привязан жестко к размеру udp пейлоада.
Режим tamper означает модификацию пакетов известных протоколов особенным для протокола образом.
На текущий момент работает только с DHT.
Поддерживается определение пакетов QUIC Initial с расшифровкой содержимого и имени хоста, то есть параметр
--hostlist
будет работать.
Определяются пакеты wireguard handshake initiation и DHT (начинается с 'd1', кончается 'e').
Для десинхронизации других протоколов обязательно указывать --dpi-desync-any-protocol
.
Реализован conntrack для udp. Можно пользоваться --dpi-desync-cutoff. Таймаут conntrack для udp
можно изменить 4-м параметром в --ctrack-timeouts
.
Атака fake полезна только для stateful DPI, она бесполезна для анализа на уровне отдельных пакетов.
По умолчанию fake наполнение - 64 нуля. Можно указать файл в --dpi-desync-fake-unknown-udp
.
Современная сеть практически не пропускает фрагментированные tcp на уровне ip. На udp с этим дело получше, поскольку некоторые udp протоколы могут опираться на этот механизм (IKE старых версий). Однако, кое-где бывает, что режут и фрагментированный udp. Роутеры на базе linux могут самопроизвольно собирать или перефрагментировать пакеты. Позиция фрагментации задается отдельно для tcp и udp. По умолчанию 24 и 8 соответственно, должна быть кратна 8. Смещение считается с транспортного заголовка.
Существует ряд моментов вокруг работы с фрагментами на Linux, без понимания которых может ничего не получиться.
ipv4 : Linux дает отсылать ipv4 фрагменты, но стандартные настройки iptables в цепочке OUTPUT могут вызывать ошибки отправки.
ipv6 : Нет способа для приложения гарантированно отослать фрагменты без дефрагментации в conntrack.
На разных системах получается по-разному. Где-то нормально уходят, где-то пакеты дефрагментируются.
Для ядер <4.16 похоже, что нет иного способа решить эту проблему, кроме как выгрузить модуль nf_conntrack
,
который подтягивает зависимость nf_defrag_ipv6
. Он то как раз и выполняет дефрагментацию.
Для ядер 4.16+ ситуация чуть лучше. Из дефрагментации исключаются пакеты в состоянии NOTRACK.
Чтобы не загромождать описание, смотрите пример решения этой проблемы в blockcheck.sh
.
Иногда требуется подгружать модуль ip6table_raw
с параметром raw_before_defrag=1
.
В openwrt параметры модулей указываются через пробел после их названий в файлах /etc/modules.d
.
В традиционных системах посмотрите используется ли iptables-legacy
или iptables-nft
. Если legacy, то нужно создать файл
/etc/modprobe.d/ip6table_raw.conf
с содержимым :
options ip6table_raw raw_before_defrag=1
В некоторых традиционных дистрибутивах можно изменить текущий ip6tables через : update-alternatives --config ip6tables
Если вы хотите оставаться на iptables-nft, вам придется пересобрать патченную версию. Патч совсем небольшой.
В nft.c
найдите фрагмент:
{
.name = "PREROUTING",
.type = "filter",
.prio = -300, /* NF_IP_PRI_RAW */
.hook = NF_INET_PRE_ROUTING,
},
{
.name = "OUTPUT",
.type = "filter",
.prio = -300, /* NF_IP_PRI_RAW */
.hook = NF_INET_LOCAL_OUT,
},
и замените везде -300 на -450.
Это нужно сделать вручную, никакой автоматики в blockcheck.sh
нет.
Либо можно раз и навсегда избавиться от этой проблемы, используя nftables
. Там можно создать netfilter hook
с любым приоритетом. Используйте приоритет -401 и ниже.
При использовании iptables и NAT, похоже, что нет способа прицепить обработчик очереди после NAT. Пакет попадает в nfqws с source адресом внутренней сети, затем фрагментируется и уже не обрабатывается NAT. Так и уходит во внешюю сеть с src ip 192.168.x.x. Следовательно, метод не срабатывает. Видимо единственный рабочий метод - отказаться от iptables и использовать nftables. Хук должен быть с приоритетом 101 или выше.
nfqws способен по-разному реагировать на различные запросы и применять разные стратегии дурения.
Это реализовано посредством поддержки множества профилей дурения.
Профили разделяются в командной строке параметром --new
. Первый профиль создается автоматически.
Для него не нужно --new
. Каждый профиль имеет фильтр. По умолчанию он пуст, то есть профиль удовлетворяет
любым условиям.
Фильтр может содержать жесткие параметры: версия ip протокола, ipset и порты tcp/udp.
Они всегда однозначно идентифицируются даже на нулевой фазе десинхронизации, когда еще хост и L7 неизвестны.
В качестве мягкого фильтра могут выступать хост-листы и протокол прикладного уровня (l7).
L7 протокол становится известен обычно после первого пакета с данными.
При поступлении запроса идет проверка профилей в порядке от первого до последнего до
достижения первого совпадения с фильтром.
Жесткие параметры фильтра сверяются первыми. При несовпадении идет сразу же переход к следующему профилю.
Если какой-то профиль удовлетворяет жесткому фильтру и L7 фильтру и содержит авто-хостлист, он выбирается сразу.
Если профиль удовлетворяет жесткому фильтру и L7 фильтру, для него задан хостлист, и у нас еще нет имени хоста,
идет переход к следующему профилю. В противном случае идет проверка по хостлистам этого профиля.
Если имя хоста удовлетворяет листам, выбирается этот профиль. Иначе идет переход к следующему.
Может так случиться, что до получения имени хоста или узнавания L7 протокола соединение идет по одному профилю,
а при выяснении этих параметров профиль меняется на лету. Это может произойти даже дважды - при выяснении L7
и имени хоста. Чаще всего это выяснение совмещается в одно действие, поскольку по одному пакету как правило узнается и L7, и хост.
Поэтому если у вас есть параметры дурения нулевой фазы, тщательно продумывайте что может произойти при переключении стратегии.
Смотрите debug log, чтобы лучше понять что делает nfqws.
Нумерация профилей идет с 1 до N. Последним в цепочке создается пустой профиль с номером 0.
Он используется, когда никакие условия фильтров не совпали.
[!IMPORTANT] Множественные стратегии создавались только для случаев, когда невозможно обьединить имеющиеся стратегии для разных ресурсов. Копирование стратегий из blockcheck для разных сайтов во множество профилей без понимания как они работают приведет к нагромождению параметров, которые все равно не покроют все возможные заблокированные ресурсы. Вы только увязните в этой каше.
[!IMPORTANT] user-mode реализация ipset создавалась не как удобная замена *nix версии, реализованной в ядре. Вариант в ядре работает гораздо эффективнее. Это создавалось для систем без подержки ipset в ядре. Конкретно - Windows и ядра Linux, собранные без nftables и ipset модулей ядра. Например, в android нет ipset.
iptables для задействования атаки на первые пакеты данных в tcp соединении :
iptables -t mangle -I POSTROUTING -o <внешний_интерфейс> -p tcp -m multiport --dports 80,443 -m connbytes --connbytes-dir=original --connbytes-mode=packets --connbytes 1:6 -m mark ! --mark 0x40000000/0x40000000 -j NFQUEUE --queue-num 200 --queue-bypass
Этот вариант применяем, когда DPI не следит за всеми запросами http внутри keep-alive сессии. Если следит, направляем только первый пакет от https и все пакеты от http :
iptables -t mangle -I POSTROUTING -o <внешний_интерфейс> -p tcp --dport 443 -m connbytes --connbytes-dir=original --connbytes-mode=packets --connbytes 1:6 -m mark ! --mark 0x40000000/0x40000000 -j NFQUEUE --queue-num 200 --queue-bypass
iptables -t mangle -I POSTROUTING -o <внешний_интерфейс> -p tcp --dport 80 -m mark ! --mark 0x40000000/0x40000000 -j NFQUEUE --queue-num 200 --queue-bypass
mark нужен, чтобы сгенерированный поддельный пакет не попал опять к нам на обработку. nfqws выставляет fwmark при его отсылке. хотя nfqws способен самостоятельно различать помеченные пакеты, фильтр в iptables по mark нужен при использовании connbytes, чтобы не допустить изменения порядка следования пакетов. Процессинг очереди - процесс отложенный. Если ядро имеет пакеты на отсылку вне очереди - оно их отправляет незамедлительно. Изменение правильного порядка следования пакетов при десинхронизации ломает всю идею. Так же были замечены дедлоки при достаточно большой отсылке пакетов из nfqws и отсутствии mark фильтра. Процесс может зависнуть. Поэтому наличие фильтра по mark в ip/nf tables можно считать обязательным.
Почему --connbytes 1:6
:
Для режима autottl необходимо перенаправление входящего SYN,ACK
пакета или первого пакета соединения (что обычно есть тоже самое).
Для режима autohostlist необходимы входящие RST и http redirect.
Можно построить фильтр на tcp flags для выделения SYN,ACK
и модуле u32 для поиска характерных паттернов http redirect,
но проще использовать connbytes для выделения нескольких начальных входящих пакетов.
iptables -t mangle -I PREROUTING -i <внешний интерфейс> -p tcp -m multiport --sports 80,443 -m connbytes --connbytes-dir=reply --connbytes-mode=packets --connbytes 1:3 -m mark ! --mark 0x40000000/0x40000000 -j NFQUEUE --queue-num 200 --queue-bypass
Для quic :
iptables -t mangle -I POSTROUTING -o <внешний_интерфейс> -p udp --dport 443 -m connbytes --connbytes-dir=original --connbytes-mode=packets --connbytes 1:6 -m mark ! --mark 0x40000000/0x40000000 -j NFQUEUE --queue-num 200 --queue-bypass
6 пакетов берется, чтобы покрыть случаи возможных ретрансмиссий quic initial в случае плохой связи или если сервер плохо себя чувствует, а приложение настаивает именно на quic, не переходя на tcp. А так же для работы autohostlist по quic. Однако, autohostlist для quic не рекомендуется.
Можно начать с базовой конфигурации.
IFACE_WAN=wan
nft create table inet ztest
nft add chain inet ztest post "{type filter hook postrouting priority mangle;}"
nft add rule inet ztest post oifname $IFACE_WAN meta mark and 0x40000000 == 0 tcp dport "{80,443}" ct original packets 1-6 queue num 200 bypass
nft add rule inet ztest post oifname $IFACE_WAN meta mark and 0x40000000 == 0 udp dport 443 ct original packets 1-6 queue num 200 bypass
# auto hostlist with avoiding wrong ACK numbers in RST,ACK packets sent by russian DPI
sysctl net.netfilter.nf_conntrack_tcp_be_liberal=1
nft add chain inet ztest pre "{type filter hook prerouting priority filter;}"
nft add rule inet ztest pre iifname $IFACE_WAN tcp sport "{80,443}" ct reply packets 1-3 queue num 200 bypass
Для задействования IP фрагментации и datanoack
на проходящие пакеты требуется особая конфигурация цепочек, перенаправляющая пакеты после NAT.
В скриптах zapret эта схема называется POSTNAT
, и она возможна только на nftables.
Сгенерированные nfqws пакеты требуется на раннем этапе помечать как notrack, чтобы они не были испорчены NAT.
IFACE_WAN=wan
nft create table inet ztest
nft add chain inet ztest postnat "{type filter hook postrouting priority srcnat+1;}"
nft add rule inet ztest postnat oifname $IFACE_WAN meta mark and 0x40000000 == 0 tcp dport "{80,443}" ct original packets 1-6 queue num 200 bypass
nft add rule inet ztest postnat oifname $IFACE_WAN meta mark and 0x40000000 == 0 udp dport 443 ct original packets 1-6 queue num 200 bypass
nft add chain inet ztest predefrag "{type filter hook output priority -401;}"
nft add rule inet ztest predefrag "mark & 0x40000000 != 0x00000000 notrack"
Удаление тестовой таблицы :
nft delete table inet ztest
Если ваше устройство поддерживает аппаратное ускорение (flow offloading, hardware nat, hardware acceleration), то iptables могут не работать. При включенном offloading пакет не проходит по обычному пути netfilter. Необходимо или его отключить, или выборочно им управлять.
В новых ядрах присутствует software flow offloading (SFO).
Пакеты, проходящие через SFO, так же проходят мимо большей части механизмов iptables. При включенном SFO работает
DNAT/REDIRECT (tpws). Эти соединения исключаются из offloading. Однако, остальные соединения идут через SFO, потому
NFQUEUE будет срабатывать только до помещения соединения в flowtable. Практически это означает, что почти весь функционал nfqws работать не будет.
Offload включается через специальный target в iptables FLOWOFFLOAD
. Не обязательно пропускать весь трафик через offload. Можно исключить из
offload соединения, которые должны попасть на tpws или nfqws. openwrt не предусматривает выборочного управления offload.
Поэтому скрипты zapret поддерживают свою систему выборочного управления offload в openwrt.
iptables target FLOWOFFLOAD
- это проприетарное изобретение openwrt.
Управление offload в nftables реализовано в базовом ядре linux без патчей.
tpws - это transparent proxy.
@<config_file>|$<config_file> ; читать конфигурацию из файла. опция должна быть первой. остальные опции игнорируются.
--debug=0|1|2|syslog|@<filename> ; 0,1,2 = логирование на косоль : 0=тихо, 1(default)=подробно, 2=отладка.
--debug-level=0|1|2 ; указать уровень логирования для syslog и @<filename>
--daemon ; демонизировать прогу
--pidfile=<file> ; сохранить PID в файл
--user=<username> ; менять uid процесса
--uid=uid[:gid] ; менять uid процесса
--bind-addr ; на каком адресе слушать. может быть ipv4 или ipv6 адрес
; если указан ipv6 link local, то требуется указать с какого он интерфейса : fe80::1%br-lan
--bind-linklocal=no|unwanted|prefer|force
; no : биндаться только на global ipv6
; unwanted (default) : предпочтительно global, если нет - LL
; prefer : предпочтительно LL, если нет - global
; force : биндаться только на LL
--bind-iface4=<iface> ; слушать на первом ipv4 интерфейса iface
--bind-iface6=<iface> ; слушать на первом ipv6 интерфейса iface
--bind-wait-ifup=<sec ; ждать до N секунд появления и поднятия интерфейса
--bind-wait-ip=<sec> ; ждать до N секунд получения IP адреса (если задан --bind-wait-ifup - время идет после поднятия интерфейса)
--bind-wait-ip-linklocal=<sec>
; имеет смысл только при задании --bind-wait-ip
; --bind-linklocal=unwanted : согласиться на LL после N секунд
; --bind-linklocal=prefer : согласиться на global address после N секунд
--bind-wait-only ; подождать все бинды и выйти. результат 0 в случае успеха, иначе не 0.
--connect-bind-addr ; с какого адреса подключаться во внешнюю сеть. может быть ipv4 или ipv6 адрес
; если указан ipv6 link local, то требуется указать с какого он интерфейса : fe80::1%br-lan
; опция может повторяться для v4 и v6 адресов
; опция не отменяет правил маршрутизации ! выбор интерфейса определяется лишь правилами маршрутизации, кроме случая v6 link local.
--socks ; вместо прозрачного прокси реализовать socks4/5 proxy
--no-resolve ; запретить ресолвинг имен через socks5
--resolve-threads ; количество потоков ресолвера
--port=<port> ; на каком порту слушать
--maxconn=<max_connections> ; максимальное количество соединений от клиентов к прокси
--maxfiles=<max_open_files> ; макс количество файловых дескрипторов (setrlimit). мин требование (X*connections+16), где X=6 в tcp proxy mode, X=4 в режиме тамперинга.
; стоит сделать запас с коэффициентом как минимум 1.5. по умолчанию maxfiles (X*connections)*1.5+16
--max-orphan-time=<sec> ; если вы запускаете через tpws торрент-клиент с множеством раздач, он пытается установить очень много исходящих соединений,
; большая часть из которых отваливается по таймауту (юзера сидят за NAT, firewall, ...)
; установление соединения в linux может длиться очень долго. локальный конец отвалился, перед этим послав блок данных,
; tpws ждет подключения удаленного конца, чтобы отослать ему этот блок, и зависает надолго.
; настройка позволяет сбрасывать такие подключения через N секунд, теряя блок данных. по умолчанию 5 сек. 0 означает отключить функцию
; эта функция не действует на успешно подключенные ранее соединения
--local-rcvbuf=<bytes> ; SO_RCVBUF для соединений client-proxy
--local-sndbuf=<bytes> ; SO_SNDBUF для соединений client-proxy
--remote-rcvbuf=<bytes> ; SO_RCVBUF для соединений proxy-target
--remote-sndbuf=<bytes> ; SO_SNDBUF для соединений proxy-target
--nosplice ; не использовать splice на linux системах
--skip-nodelay ; не устанавливать в исходящих соединения TCP_NODELAY. несовместимо со split.
--local-tcp-user-timeout=<seconds> ; таймаут соединений client-proxy (по умолчанию : 10 сек, 0 = оставить системное значение)
--remote-tcp-user-timeout=<seconds> ; таймаут соединений proxy-target (по умолчанию : 20 сек, 0 = оставить системное значение)
--fix-seg=<int> ; исправлять неудачи tcp сегментации ценой задержек для всех клиентов и замедления. ждать до N мс. по умолчанию 30 мс.
--split-pos=N|-N|marker+N|marker-N ; список через запятую маркеров для tcp сегментации
--split-any-protocol ; применять сегментацию к любым пакетам. по умолчанию - только к известным протоколам (http, TLS)
--disorder[=http|tls] ; путем манипуляций с сокетом вынуждает отправлять первым второй сегмент разделенного запроса
--oob[=http|tls] ; отправить байт out-of-band data (OOB) в конце первой части сплита
--oob-data=<char>|0xHEX ; переопределить байт OOB. по умолчанию 0x00.
--hostcase ; менять регистр заголовка "Host:". по умолчанию на "host:".
--hostspell=HoST ; точное написание заголовка Host (можно "HOST" или "HoSt"). автоматом включает --hostcase
--hostdot ; добавление точки после имени хоста : "Host: kinozal.tv."
--hosttab ; добавление табуляции после имени хоста : "Host: kinozal.tv\t"
--hostnospace ; убрать пробел после "Host:"
--hostpad=<bytes> ; добавить паддинг-хедеров общей длиной <bytes> перед Host:
--domcase ; домен после Host: сделать таким : TeSt.cOm
--methodspace ; добавить пробел после метода : "GET /" => "GET /"
--methodeol ; добавить перевод строки перед методом : "GET /" => "\r\nGET /"
--unixeol ; конвертировать 0D0A в 0A и использовать везде 0A
--tlsrec=N|-N|marker+N|marker-N ; разбивка TLS ClientHello на 2 TLS records на указанной позиции. Минимальное смещение - 6.
--mss=<int> ; установить MSS для клиента. может заставить сервер разбивать ответы, но существенно снижает скорость
--tamper-start=[n]<pos> ; начинать дурение только с указанной байтовой позиции или номера блока исходяшего потока (считается позиция начала принятого блока)
--tamper-cutoff=[n]<pos> ; закончить дурение на указанной байтовой позиции или номере блока исходящего потока (считается позиция начала принятого блока)
--hostlist=<filename> ; действовать только над доменами, входящими в список из filename. поддомены автоматически учитываются.
; в файле должен быть хост на каждой строке.
; список читается при старте и хранится в памяти в виде иерархической структуры для быстрого поиска.
; при изменении времени модификации файла он перечитывается автоматически по необходимости
; список может быть запакован в gzip. формат автоматически распознается и разжимается
; списков может быть множество. пустой общий лист = его отсутствие
; хосты извлекаются из Host: хедера обычных http запросов и из SNI в TLS ClientHello.
--hostlist-exclude=<filename> ; не применять дурение к доменам из листа. может быть множество листов. схема аналогична include листам.
--hostlist-auto=<filename> ; обнаруживать автоматически блокировки и заполнять автоматический hostlist (требует перенаправления входящего трафика)
--hostlist-auto-fail-threshold=<int> ; сколько раз нужно обнаружить ситуацию, похожую на блокировку, чтобы добавить хост в лист (по умолчанию: 3)
--hostlist-auto-fail-time=<int> ; все эти ситуации должны быть в пределах указанного количества секунд (по умолчанию: 60)
--hostlist-auto-debug=<logfile> ; лог положительных решений по autohostlist. позволяет разобраться почему там появляются хосты.
--new ; начало новой стратегии (новый профиль)
--filter-l3=ipv4|ipv6 ; фильтр версии ip для текущей стратегии
--filter-tcp=[~]port1[-port2]|* ; фильтр портов tcp для текущей стратегии. ~ означает инверсию. поддерживается список через запятую.
--filter-l7=[http|tls|quic|wireguard|dht|unknown] ; фильтр протокола L6-L7. поддерживается несколько значений через запятую.
--ipset=<filename> ; включающий ip list. на каждой строчке ip или cidr ipv4 или ipv6. поддерживается множество листов и gzip. перечитка автоматическая.
--ipset-exclude=<filename> ; исключающий ip list. на каждой строчке ip или cidr ipv4 или ipv6. поддерживается множество листов и gzip. перечитка автоматическая.
tpws, как и nfqws, поддерживает множественную сегментацию запросов. Сплит позиции задаются в --split-pos
.
Указываются маркеры через запятую. Описание маркеров см в разделе nfqws.
На прикладном уровне в общем случае нет гарантированного средства заставить ядро выплюнуть блок данных, порезанным в определенном месте. ОС держит буфер отсылки (SNDBUF) у каждого сокета. Если у сокета включена опция TCP_NODELAY и буфер пуст, то каждый send приводит к отсылке отдельного ip пакета или группы пакетов, если блок не вмещается в один ip пакет. Однако, если в момент send уже имеется неотосланный буфер, то ОС присоединит данные к нему, никакой отсылки отдельным пакетом не будет. Но в этом случае и так нет никакой гарантии, что какой-то блок сообщения пойдет в начале пакета, на что собственно и заточены DPI. Разбиение будет производится согласно MSS, который зависит от MTU исходящего интерфейса. Таким образом DPI, смотрящие в начало поля данных TCP пакета, будут поломаны в любом случае. Протокол http относится к запрос-ответным протоколам. Новое сообщение посылается только тогда, когда сервер получил запрос и полностью вернул ответ. Значит запрос фактически был не только отослан, но и принят другой стороной, а следовательно буфер отсылки пуст, и следующие 2 send приведут к отсылке сегментов данных разными ip пакетами.
Таким образом tpws обеспечивает сплит только за счет раздельных вызовов send, и это обычно работает надежно, если разбивать не на слишком много частей и не на слишком мелкие подряд следующие части. В последнем случае Linux все же может обьединить некоторые части, что приведет к несоответствию реальной сегментации указанным сплит позициям. Другие ОС в этом вопросе ведут себя более предсказуемо. Спонтанного обьединения замечено не было. Поэтому не стоит злоупотреблять сплитами и в особенности мелкими соседними пакетами.
Как показывается практика, проблемы могут начаться , если количество сплит позиций превышает 8.
При неудаче сегментации будет выводиться сообщение WARNING ! segmentation failed
.
Если вы его видите, это повод снизить количество сплит позиций.
Если это не вариант, для ядер Linux >=4.6 есть параметр --fix-seg
. Он позволяет подождать завершение отсылки перед отправкой следующей части.
Но этот вариант ломает модель асинхронной обработки событий. Пока идет ожидание, все остальные соединения не обрабатываются
и кратковременно подвисают. На практике это может быть совсем небольшое ожидание - менее 10 мс.
И производится оно только , если происходит split, и в ожидании есть реальная необходимость.
В высоконагруженных системах данный вариант не рекомендуется. Но для домашнего использования может подойти, и вы эти задержки даже не заметите.
Если вы пытаетесь сплитнуть массивную передачу с --split-any-protocol
, когда информация поступает быстрее отсылки,
то без --fix-seg
ошибки сегментации будут сыпаться сплошным потоком.
Работа по массивному потоку без ограничителей --tamper-start
и --tamper-cutoff
обычно лишена смысла.
tpws работает на уровне сокетов, поэтому длинный запрос, не вмещающийся в 1 пакет (TLS с kyber), он получает целым блоком.
На каждую сплит часть он делает отдельный вызов send()
. Но ОС не сможет отослать данные в одном пакете, если размер превысит MTU.
В случае слишком большого сегмента ОС дополнительно его порежет на более мелкие. Результат должен быть аналогичен nfqws.
--disorder
заставляет слать каждый 2-й пакет с TTL=1, начиная с первого.
К серверу приходят все четные пакеты сразу. На остальные ОС делает ретрансмиссию, и они приходят потом.
Это само по себе создает дополнительную задержку (200 мс в linux для первой ретрансмиссии).
Иным способом сделать disorder в сокет варианте не представляется возможным.
Итоговый порядок для 6 сегментов получается 2 4 6 1 3 5
.
--oob
высылает 1 байт out-of-band data после первого сплит сегмента. oob
в каждом сегменте сплита показал себя ненадежным.
Сервер получает oob в сокет.
Сочетание oob
и disorder
возможно только в Linux. Остальные ОС не умеют с таким справляться. Флаг URG теряется при ретрансмиссиях.
Сервер получает oob в сокет. Сочетание этих параметров в ос, кроме Linux, вызывает ошибку на этапе запуска.
--tlsrec
позволяют внутри одного tcp сегмента разрезать TLS ClientHello на 2 TLS records. Можно использовать стандартный
механизм маркеров для задания относительных позиций.
--tlsrec
ломает значительное количество сайтов. Криптобиблиотеки (openssl, ...) на оконечных http серверах
без проблем принимают разделенные tls сегменты, но мидлбоксы - не всегда. К мидлбоксам можно отнести CDN
или системы ddos-защиты. Поэтому применение --tlsrec
без ограничителей вряд ли целесообразно.
В РФ --tlsrec
обычно не работает с TLS 1.2, потому что цензор парсит сертификат сервера из ServerHello.
Работает только с TLS 1.3, поскольку там эта информация шифруется.
Впрочем, сейчас сайтов, не поддерживающих TLS 1.3, осталось немного.
--mss
устанавливает опцию сокета TCP_MAXSEG. Клиент выдает это значение в tcp опциях SYN пакета.
Сервер в ответ в SYN,ACK выдает свой MSS. На практике сервера обычно снижают размеры отсылаемых ими пакетов, но они
все равно не вписываются в низкий MSS, указанный клиентом. Обычно чем больше указал клиент, тем больше
шлет сервер. На TLS 1.2 если сервер разбил заброс так, чтобы домен из сертификата не попал в первый пакет,
это может обмануть DPI, секущий ответ сервера.
Схема может значительно снизить скорость и сработать не на всех сайтах.
С фильтром по hostlist совместимо только в режиме socks при включенном удаленном ресолвинге хостов.
(firefox network.proxy.socks_remote_dns). Это единственный вариант, когда tpws может узнать имя хоста
еще на этапе установления соединения.
Применяя данную опцию к сайтам TLS1.3, если броузер тоже поддерживает TLS1.3, то вы делаете только хуже.
Но нет способа автоматически узнать когда надо применять, когда нет, поскольку MSS идет только в
3-way handshake еще до обмена данными, а версию TLS можно узнать только по ответу сервера, который
может привести к реакции DPI.
Использовать только когда нет ничего лучше или для отдельных ресурсов.
Для http использовать смысла нет, поэтому заводите отдельный desync profile с фильтром по порту 443.
Работает только на Linux, не работает на BSD и MacOS.
Параметр --hostpad=<bytes>
добавляет паддинг-хедеров перед Host:
на указанное количество байтов.
Если размер <bytes>
слишком большой, то идет разбивка на разные хедеры по 2K.
Общий буфер приема http запроса - 64K, больший паддинг не поддерживается, да и http сервера
такое уже не принимают.
Полезно против DPI, выполняющих реассемблинг TCP с ограниченным буфером.
Если техника работает, то после некоторого количества bytes http запрос начнет проходить до сайта.
Если при этом критический размер padding около MTU, значит скорее всего DPI не выполняет реассемблинг пакетов, и лучше будет использовать обычные опции TCP сегментации.
Если все же реассемблинг выполняется, то критический размер будет около размера буфера DPI. Он может быть 4K или 8K, возможны и другие значения.
Работают аналогично nfqws, кроме некоторых моментов.
Нет параметра --filter-udp
, поскольку tpws udp не поддерживает.
Методы нулевой фазы (--mss
) могут работать по хостлисту в одном единственном случае:
если используется режим socks и удаленный ресолвинг хостов через прокси.
То есть работоспособность вашей настройки в одном и том же режиме может зависеть от того,
применяет ли клиент удаленный ресолвинг. Это может быть неочевидно.
В одной программе работает, в другой - нет.
Если вы используете профиль с хостлистом , и вам нужен mss, укажите mss в профиле с хостлистом,
создайте еще один профиль без хостлиста, если его еще нет, и в нем еще раз укажите mss.
Тогда при любом раскладе будет выполняться mss.
Используйте curl --socks5
и curl --socks5-hostname
для проверки вашей стратегии.
Смотрите вывод --debug
, чтобы убедиться в правильности настроек.
--debug
позволяет выводить подробный лог действий на консоль, в syslog или в файл.
Может быть важен порядок следования опций. --debug
лучше всего указывать в самом начале.
Опции анализируются последовательно. Если ошибка будет при проверке опции, а до анализа --debug
еще дело не дошло,
то сообщения не будут выведены в файл или syslog.
--debug=0|1|2
позволяют сразу в одном параметре включить логирование на консоль и указать уровень.
Сохранено для совместимости с более старыми версиями. Для выбора уровня в режиме syslog или file используйте
отдельный параметр --debug-level
. Если в этих режимах --debug
не указывать уровень через --debug-level
, то
автоматически назначается уровень 1.
При логировании в файл процесс не держит файл открытым. Ради каждой записи файл открывается и потом закрывается.
Так что файл можно удалить в любой момент, и он будет создан заново при первом же сообщении в лог.
Но имейте в виду, что если вы запускаете процесс под root, то будет сменен UID на не-root.
В начале на лог файл меняется owner, иначе запись будет невозможна. Если вы потом удалите файл,
и у процесса не будет прав на создание файла в его директории, лог больше не будет вестись.
Вместо удаления лучше использовать truncate.
В шелле это можно сделать через команду ": >filename"
tpws может биндаться на множество интерфейсов и IP адресов (до 32 шт).
Порт всегда только один.
Параметры --bind-iface*
и --bind-addr
создают новый бинд.
Остальные параметры --bind-*
относятся к последнему бинду.
Для бинда на все ipv4 укажите --bind-addr "0.0.0.0"
, на все ipv6 - "::"
. --bind-addr=""
- биндаемся на все ipv4 и ipv6.
Выбор режима использования link local ipv6 адресов (fe80::/8
) :
--bind-iface6 --bind-linklocal=no : сначала приватный адрес fc00::/7, затем глобальный адрес
--bind-iface6 --bind-linklocal=unwanted : сначала приватный адрес fc00::/7, затем глобальный адрес, затем link local.
--bind-iface6 --bind-linklocal=prefer : сначала link local, затем приватный адрес fc00::/7, затем глобальный адрес.
--bind-iface6 --bind-linklocal=force : только link local
Если не указано ни одного бинда, то создается бинд по умолчанию на все адреса всех интерфейсов.
Для бинда на конкретный link-local address делаем так : --bind-iface6=fe80::aaaa:bbbb:cccc:dddd%iface-name
Параметры --bind-wait*
могут помочь в ситуациях, когда нужно взять IP с интерфейса, но его еще нет, он не поднят
или не сконфигурирован.
В разных системах события ifup ловятся по-разному и не гарантируют, что интерфейс уже получил IP адрес определенного типа.
В общем случае не существует единого механизма повеситься на событие типа "на интерфейсе X появился link local address".
Для бинда на известный ip, когда еще интерфейс не сконфигурирован, нужно делать так: --bind-addr=192.168.5.3 --bind-wait-ip=20
В режиме transparent бинд возможен на любой несуществующий адрес, в режиме socks - только на существующий.
Параметры rcvbuf и sndbuf позволяют установить setsockopt SO_RCVBUF SO_SNDBUF для локального и удаленного соединения.
--skip-nodelay
может быть полезен, когда tpws используется без дурения, чтобы привести MTU к MTU системы, на которой работает tpws.
Это может быть полезно для скрытия факта использования VPN. Пониженный MTU - 1 из способов обнаружения
подозрительного подключения. С tcp proxy ваши соединения неотличимы от тех, что сделал бы сам шлюз.
--local-tcp-user-timeout
и --remote-tcp-user-timeout
устанавливают значение таймаута в секундах
для соединений клиент-прокси и прокси-сервер. Этот таймаут соответствует опции сокета linux
TCP_USER_TIMEOUT. Под таймаутом подразумевается время, в течение которого буферизированные данные
не переданы или на переданные данные не получено подтверждение (ACK) от другой стороны.
Этот таймаут никак не касается времени отсутствия какой-либо передачи через сокет лишь потому,
что данных для передачи нет. Полезно для сокращения время закрытия подвисших соединений.
Поддерживается только на Linux и MacOS.
Режим --socks
не требует повышенных привилегий (кроме бинда на привилегированные порты 1..1023).
Поддерживаются версии socks 4 и 5 без авторизации. Версия протокола распознается автоматически.
Подключения к IP того же устройства, на котором работает tpws, включая localhost, запрещены.
socks5 позволяет удаленно ресолвить хосты (curl : --socks5-hostname firefox : socks_remote_dns=true).
tpws поддерживает эту возможность асинхронно, не блокируя процессинг других соединений, используя
многопоточный пул ресолверов. Количество потоков определяется автоматически в зависимости от --maxconn
,
но можно задать и вручную через параметр --resolver-threads
.
Запрос к socks выставляется на паузу, пока домен не будет преобразован в ip адрес в одном из потоков
ресолвера. Ожидание может быть более длинным, если все потоки заняты.
Если задан параметр --no-resolve
, то подключения по именам хостов запрещаются, а пул ресолверов не создается.
Тем самым экономятся ресурсы.
Для перенаправления tcp соединения на transparent proxy используются команды следующего вида :
iptables -t nat -I OUTPUT -o <внешний_интерфейс> -p tcp --dport 80 -m owner ! --uid-owner tpws -j DNAT --to 127.0.0.127:988
iptables -t nat -I PREROUTING -i <внутренний_интерфейс> -p tcp --dport 80 -j DNAT --to 127.0.0.127:988
Первая команда для соединений с самой системы, вторая - для проходящих через роутер соединений.
DNAT на localhost работает в цепочке OUTPUT, но не работает в цепочке PREROUTING без включения параметра route_localnet :
sysctl -w net.ipv4.conf.<внутренний_интерфейс>.route_localnet=1
Можно использовать -j REDIRECT --to-port 988
вместо DNAT, однако в этом случае процесс transparent proxy должен
слушать на ip адресе входящего интерфейса или на всех адресах. Слушать на всех - не есть хорошо с точки зрения
безопасности. Слушать на одном (локальном) можно, но в случае автоматизированного скрипта придется его узнавать, потом
динамически вписывать в команду. В любом случае требуются дополнительные усилия. Использование route_localnet тоже имеет
потенциальные проблемы с безопасностью. Вы делаете доступным все, что висит на 127.0.0.0/8
для локальной подсети <
внутренний_интерфейс>. Службы обычно привязываются к 127.0.0.1
, поэтому можно средствами iptables запретить входящие
на 127.0.0.1
не с интерфейса lo, либо повесить tpws на любой другой IP из из 127.0.0.0/8
, например на 127.0.0.127
,
и разрешить входящие не с lo только на этот IP.
iptables -A INPUT ! -i lo -d 127.0.0.127 -j ACCEPT
iptables -A INPUT ! -i lo -d 127.0.0.0/8 -j DROP
Фильтр по owner необходим для исключения рекурсивного перенаправления соединений от самого tpws. tpws запускается под пользователем tpws, для него задается исключающее правило.
ip6tables работают почти точно так же, как и ipv4, но есть ряд важных нюансов. В DNAT следует брать адрес --to в квадратные скобки. Например :
ip6tables -t nat -I OUTPUT -o <внешний_интерфейс> -p tcp --dport 80 -m owner ! --uid-owner tpws -j DNAT --to [::1]:988
Параметра route_localnet не существует для ipv6. DNAT на localhost (::1) возможен только в цепочке OUTPUT. В цепочке PREROUTING DNAT возможен на любой global address или на link local address того же интерфейса, откуда пришел пакет. NFQUEUE работает без изменений.
Базовая конфигурация :
IFACE_WAN=wan
IFACE_LAN=br-lan
sysctl -w net.ipv4.conf.$IFACE_LAN.route_localnet=1
nft create table inet ztest
nft create chain inet ztest localnet_protect
nft add rule inet ztest localnet_protect ip daddr 127.0.0.127 return
nft add rule inet ztest localnet_protect ip daddr 127.0.0.0/8 drop
nft create chain inet ztest input "{type filter hook input priority filter - 1;}"
nft add rule inet ztest input iif != "lo" jump localnet_protect
nft create chain inet ztest dnat_output "{type nat hook output priority dstnat;}"
nft add rule inet ztest dnat_output meta skuid != tpws oifname $IFACE_WAN tcp dport { 80, 443 } dnat ip to 127.0.0.127:988
nft create chain inet ztest dnat_pre "{type nat hook prerouting priority dstnat;}"
nft add rule inet ztest dnat_pre meta iifname $IFACE_LAN tcp dport { 80, 443 } dnat ip to 127.0.0.127:988
Удаление таблицы :
nft delete table inet ztest
!!! nftables не могут работать с ipset-ами. Собственный аналогичный механизм требует огромного количество RAM !!! для загрузки больших листов. Например, для загона 100K записей в nfset не хватает даже 256 Mb. !!! Если вам нужны большие листы на домашних роутерах, откатывайтесь на iptables+ipset.
1) Внесите заблокированные домены в ipset/zapret-hosts-user.txt
и запустите ipset/get_user.sh
На выходе получите ipset/zapret-ip-user.txt
с IP адресами.
Cкрипты с названием getreestr* оперируют дампом реестра заблокированных сайтов :
2) ipset/get_reestr_resolve.sh
получает список доменов от rublacklist и дальше их ресолвит в ip адреса
в файл ipset/zapret-ip.txt.gz. В этом списке есть готовые IP адреса, но судя во всему они там в точности в том виде,
что вносит в реестр РосКомПозор. Адреса могут меняться, позор не успевает их обновлять, а провайдеры редко
банят по IP : вместо этого они банят http запросы с "нехорошим" заголовком "Host:" вне зависимости
от IP адреса. Поэтому скрипт ресолвит все сам, хотя это и занимает много времени.
Используется мультипоточный ресолвер mdig (собственная разработка).
3) ipset/get_reestr_preresolved.sh
. то же самое, что и 2), только берется уже заресолвленый список
со стороннего ресурса.
4) ipset/get_reestr_preresolved_smart.sh
. то же самое, что и 3), с добавлением всего диапазона некоторых
автономных систем (прыгающие IP адреса из cloudflare, facebook, ...) и некоторых поддоменов блокируемых сайтов
Cкрипты с названием get_antifilter_*
оперируют списками адресов и масок подсетей с сайтов antifilter.network и antifilter.download :
5) ipset/get_antifilter_ip.sh
. получает лист https://antifilter.download/list/ip.lst.
6) ipset/get_antifilter_ipsmart.sh
. получает лист https://antifilter.network/download/ipsmart.lst.
умная суммаризация отдельных адресов из ip.lst по маскам от /32 до /22
7) ipset/get_antifilter_ipsum.sh
. получает лист https://antifilter.download/list/ipsum.lst.
суммаризация отдельных адресов из ip.lst по маске /24
8) ipset/get_antifilter_ipresolve.sh
. получает лист https://antifilter.download/list/ipresolve.lst.
пре-ресолвленный список, аналогичный получаемый при помощи get_reestr_resolve. только ipv4.
9) ipset/get_antifilter_allyouneed.sh
. получает лист https://antifilter.download/list/allyouneed.lst.
Суммарный список префиксов, созданный из ipsum.lst и subnet.lst.
10) ipset/get_refilter_ipsum.sh
.
Список берется отсюда : https://github.com/1andrevich/Re-filter-lists
Все варианты рассмотренных скриптов автоматически создают и заполняют ipset. Варианты 2-10 дополнительно вызывают вариант 1.
11) ipset/get_config.sh
. этот скрипт вызывает то, что прописано в переменной GETLIST из файла config
Если переменная не определена, то ресолвятся лишь листы для ipset nozapret/nozapret6.
Листы РКН все время изменяются. Возникают новые тенденции. Требования к RAM могут меняться. Поэтому необходима нечастая, но все же регулярная ревизия что же вообще у вас происходит на роутере. Или вы можете узнать о проблеме лишь когда у вас начнет постоянно пропадать wifi, и вам придется его перезагружать каждые 2 часа (метод кувалды).
Самые щадящие варианты по RAM - get_antifilter_allyouneed.sh
, get_antifilter_ipsum.sh
, get_refilter_*.sh
.
Листы zapret-ip.txt
и zapret-ipban.txt
сохраняются в сжатом виде в файлы .gz.
Это позволяет снизить их размер во много раз и сэкономить место на роутере.
Отключить сжатие листов можно параметром конфига GZIP_LISTS=0.
На роутерах не рекомендуется вызывать эти скрипты чаще раза за 2 суток, поскольку сохранение идет либо во внутреннюю флэш память роутера, либо в случае extroot - на флэшку. В обоих случаях слишком частая запись может убить флэшку, но если это произойдет с внутренней флэш памятью, то вы просто убьете роутер.
Принудительное обновление ipset
выполняет скрипт ipset/create_ipset.sh
.
Если передан параметр no-update
, скрипт не обновляет ipset
, а только создает его при его отсутствии и заполняет.
Это полезно, когда могут случиться несколько последовательных вызовов скрипта. Нет смысла несколько раз перезаполнять
ipset
, это длительная операция на больших листах. Листы можно обновлять раз в несколько суток, и только тогда
вызывать create_ipset
без параметра no-update
. Во всех остальных случаях стоит применять no-update
.
Список РКН уже достиг внушительных размеров в сотни тысяч IP адресов. Поэтому для оптимизации ipset
применяется утилита ip2net
. Она берет список отдельных IP адресов и пытается интеллектуально создать из него подсети для сокращения
количества адресов. ip2net
отсекает неправильные записи в листах, гарантируя отсутствие ошибок при их загрузке.
ip2net
написан на языке C, поскольку операция ресурсоемкая. Иные способы роутер может не потянуть.
Можно внести список доменов в ipset/zapret-hosts-user-ipban.txt
. Их ip адреса будут помещены
в отдельный ipset ipban
. Он может использоваться для принудительного завертывания всех
соединений на прозрачный proxy redsocks
или на VPN.
IPV6 : если включен ipv6, то дополнительно создаются листы с таким же именем, но с "6" на конце перед расширением.
zapret-ip.txt
=> zapret-ip6.txt
Создаются ipset-ы zapret6 и ipban6.
Листы с antifilter не содержат список ipv6 адресов.
СИСТЕМА ИСКЛЮЧЕНИЯ IP. Все скрипты ресолвят файл zapret-hosts-user-exclude.txt
, создавая zapret-ip-exclude.txt
и zapret-ip-exclude6.txt
.
Они загоняются в ipset-ы nozapret и nozapret6. Все правила, создаваемые init скриптами, создаются с учетом этих ipset.
Помещенные в них IP не участвуют в процессе.
zapret-hosts-user-exclude.txt
может содержать домены, ipv4 и ipv6 адреса или подсети.
FreeBSD. Скрипты ipset/*.sh работают так же на FreeBSD. Вместо ipset они создают lookup таблицы ipfw с аналогичными именами. ipfw таблицы в отличие от ipset могут содержать как ipv4, так и ipv6 адреса и подсети в одной таблице, поэтому разделения нет.
Параметр конфига LISTS_RELOAD задает произвольную команду для перезагрузки листов. Это особенно полезно на BSD системах с PF. LISTS_RELOAD=- отключает перезагрузку листов.
Утилита ip2net предназначена для преобразования ipv4 или ipv6 списка ip в список подсетей
с целью сокращения размера списка. Входные данные берутся из stdin, выходные выдаются в stdout
.
-4 ; лист - ipv4 (по умолчанию)
-6 ; лист - ipv6
--prefix-length=min[-max] ; диапазон рассматриваемых длин префиксов. например : 22-30 (ipv4), 56-64 (ipv6)
--v4-threshold=mul/div ; ipv4 : включать подсети, в которых заполнено по крайней мере mul/div адресов. например : 3/4
--v6-threshold=N ; ipv6 : минимальное количество ip для создания подсети
В списке могут присутствовать записи вида ip/prefix и ip1-ip2. Такие записи выкидываются в stdout без изменений. Они принимаются командой ipset. ipset умеет для листов hash:net из ip1-ip2 делать оптимальное покрытие ip/prefix. ipfw из FreeBSD понимает ip/prefix, но не понимает ip1-ip2. ip2net фильтрует входные данные, выкидывая неправильные IP адреса.
Выбирается подсеть, в которой присутствует указанный минимум адресов. Для ipv4 минимум задается как процент от размера подсети (mul/div. например, 3/4), для ipv6 минимум задается напрямую.
Размер подсети выбирается следующим алгоритмом: Сначала в указанном диапазоне длин префиксов ищутся подсети, в которых количество адресов - максимально. Если таких сетей найдено несколько, берется наименьшая сеть (префикс больше). Например, заданы параметры v6_threshold=2 prefix_length=32-64, имеются следующие ipv6 :
1234:5678:aaaa::5
1234:5678:aaaa::6
1234:5678:aaac::5
Результат будет :
1234:5678:aaa8::/45
Эти адреса так же входят в подсеть /32. Однако, нет смысла проходиться ковровой бомбардировкой, когда те же самые адреса вполне влезают в /45 и их ровно столько же. Если изменить v6_threshold=4, то результат будет:
1234:5678:aaaa::5
1234:5678:aaaa::6
1234:5678:aaac::5
То есть ip не объединятся в подсеть, потому что их слишком мало.
Если изменить prefix_length=56-64
, результат будет:
1234:5678:aaaa::/64
1234:5678:aaac::5
Требуемое процессорное время для вычислений сильно зависит от ширины диапазона длин префиксов, размера искомых подсетей и длины листа. Если ip2net думает слишком долго, не используйте слишком большие подсети и уменьшите диапазон длин префиксов. Учтите, что арифметика mul/div - целочисленная. При превышении разрядной сетки 32 bit результат непредсказуем. Не надо делать такое: 5000000/10000000. 1/2 - гораздо лучше.
Программа предназначена для многопоточного ресолвинга больших листов через системный DNS. Она берет из stdin список доменов и выводит в stdout результат ресолвинга. Ошибки выводятся в stderr.
--threads=<threads_number> ; количество потоков. по умолчанию 1.
--family=<4|6|46> ; выбор семейства IP адресов : ipv4, ipv6, ipv4+ipv6
--verbose ; дебаг-лог на консоль
--stats=N ; выводить статистику каждые N доменов
--log-resolved=<file> ; сохранять успешно отресолвленные домены в файл
--log-failed=<file> ; сохранять неудачно отресолвленные домены в файл
--dns-make-query=<domain> ; вывести в stdout бинарный DNS запрос по домену. если --family=6, запрос будет AAAA, иначе A.
--dns-parse-query ; распарсить бинарный DNS ответ и выдать все ivp4 и ipv6 адреса из него в stdout
Параметры --dns-make-query
и --dns-parse-query
позволяют провести ресолвинг одного домена через произвольный канал.
Например, следующим образом можно выполнить DoH запрос, используя лишь mdig и curl :
mdig --family=6 --dns-make-query=rutracker.org | curl --data-binary @- -H "Content-Type: application/dns-message" https://cloudflare-dns.com/dns-query | mdig --dns-parse-query
Альтернативой ipset является использование tpws или nfqws со списком доменов.
Оба демона принимают неограниченное количество листов include (--hostlist
) и exclude (--hostlist-exclude
).
Прежде всего проверяются exclude листы. При вхождении в них происходит отказ от дурения.
Далее при наличии include листов проверяется домен на вхождение в них. При невхождении в список отказ от дурения.
Если все include листы пустые, это приравнивается к отсутствию include листов. Ограничение перестает работать.
В иных случаях происходит дурение.
Нет ни одного списка - дурение всегда.
Есть только exclude список - дурение всех, кроме.
Есть только include список - дурение только их.
Есть оба - дурение только include, кроме exclude.
В системе запуска это обыграно следующим образом.
Присутствуют 2 include списка :
ipset/zapret-hosts-users.txt.gz
или ipset/zapret-hosts-users.txt
,
ipset/zapret-hosts.txt.gz
или ipset/zapret-hosts.txt
и 1 exclude список
ipset/zapret-hosts-users-exclude.txt.gz
или ipset/zapret-hosts-users-exclude.txt
При режимах фильтрации MODE_FILTER=hostlist
или MODE_FILTER=autohostlist
система запуска передает nfqws или tpws все листы, файлы которых присутствуют.
Передача происходит через замену маркеров <HOSTLIST>
и <HOSTLIST_NOAUTO>
на реальные параметры --hostlist
, --hostlist-exclude
, --hostlist-auto
.
Если вдруг листы include присутствуют, но все они пустые, то работа аналогична отсутствию include листа.
Файл есть, но не смотря на это дурится все, кроме exclude.
Если вам нужен именно такой режим - не обязательно удалять zapret-hosts-users.txt
. Достаточно сделать его пустым.
Поддомены учитываются автоматически. Например, строчка "ru" вносит в список ".ru". Строчка ".ru" в списке не сработает.
Список доменов РКН может быть получен скриптами
ipset/get_reestr_hostlist.sh
ipset/get_antizapret_domains.sh
ipset/get_reestr_resolvable_domains.sh
ipset/get_refilter_domains.sh
Он кладется в ipset/zapret-hosts.txt.gz
.
При изменении времени модификации файлов списки перечитываются автоматически.
При фильтрации по именам доменов демон должен запускаться без фильтрации по ipset. tpws и nfqws решают нужно ли применять дурение в зависимости от хоста, полученного из протокола прикладного уровня (http, tls, quic). При использовании больших списков, в том числе списка РКН, оцените объем RAM на роутере ! Если после запуска демона RAM под завязку или случаются oom, значит нужно отказаться от таких больших списков.
Этот режим позволяет проанализировать как запросы со стороны клиента, так и ответы от сервера.
Если хост еще не находится ни в каких листах и обнаруживается ситуация, похожая на блокировку,
происходит автоматическое добавление хоста в список autohostlist
как в памяти, так и в файле.
nfqws или tpws сами ведут этот файл.
Чтобы какой-то хост не смог попась в autohostlist
используйте hostlist-exclude
.
Если он все-же туда попал - удалите запись из файла вручную. Процессы автоматически перечитают файл.
tpws/nfqws сами назначают владельцем файла юзера, под которым они работают после сброса привилегий,
чтобы иметь возможность обновлять лист.
В случае nfqws данный режим требует перенаправления в том числе и входящего трафика.
Крайне рекомендовано использовать ограничитель connbytes
, чтобы nfqws не обрабатывал гигабайты.
По этой же причине не рекомендуется использование режима на BSD системах. Там нет фильтра connbytes
.
На linux системах при использовании nfqws и фильтра connbytes может понадобится :
sysctl net.netfilter.nf_conntrack_tcp_be_liberal=1
Было замечено, что некоторые DPI в России возвращают RST с неверным ACK. Это принимается tcp/ip стеком
linux, но через раз приобретает статус INVALID в conntrack. Поэтому правила с connbytes
срабатывают
через раз, не пересылая RST пакет nfqws.
Как вообще могут вести себя DPI, получив "плохой запрос" и приняв решение о блокировке:
1) Зависание: просто отмораживается, блокируя прохождение пакетов по TCP каналу. 2) RST: отправляет RST клиенту и/или серверу 3) Редирект: (только для http) отправляет редирект на сайт-заглушку 4) Подмена сертификата: (только для https) полный перехват TLS сеанса с попыткой всунуть что-то свое клиенту. Применяется нечасто, поскольку броузеры на такое ругаются.
nfqws и tpws могут сечь варианты 1-3, 4 они не распознают. Всилу специфики работы с отдельными пакетами или с TCP каналом tpws и nfqws распознают эти ситуации по-разному. Что считается ситуацией, похожей на блокировку : 1) nfqws Несколько ретрансмиссий первого запроса в TCP сеансе, в котором имеется host. 2) nfqws,tpws RST, пришедший в ответ на первый запрос с хостом. 3) nfqws,tpws HTTP редирект, пришедший в ответ на первый запрос с хостом, на глобальный адрес с доменом 2 уровня, не совпадающим с доменом 2 уровня оригинального запроса. 4) tpws закрытие соединения клиентом после отправки первого запроса с хостом, если не было на него ответа со стороны сервера. Это обычно случается по таймауту, когда нет ответа (случай "зависание").
Чтобы снизить вероятность ложных срабатываний, имеется счетчик ситуаций, похожих на блокировку.
Если за определенное время произойдет более определенного их количества, хост считается заблокированным
и заносится в autohostlist
. По нему сразу же начинает работать стратегия по обходу блокировки.
Если в процессе счета вебсайт отвечает без признаков блокировки, счетчик сбрасывается.
Вероятно, это был временный сбой сайта.
На практике работа с данным режимом выглядит так. Первый раз пользователь заходит на сайт и получает заглушку, сброс соединения или броузер подвисает, вываливаясь по таймауту с сообщением о невозможности загрузить страницу. Надо долбить F5, принуждая броузер повторять попытки. После некоторой попытки сайт начинает работать, и дальше он будет работать всегда.
С этим режимом можно использовать техники обхода, ломающие значительное количество сайтов.
Если сайт не ведет себя как заблокированный, значит обход применен не будет.
В противном случае терять все равно нечего.
Однако, могут быть временные сбои сервера, приводящие к ситуации, аналогичной блокировке.
Могут происходит ложные срабатывания. Если такое произошло, стратегия может начать ломать
незаблокированный сайт. Эту ситуацию, увы, придется вам контролировать вручную.
Заносите такие домены в ipset/zapret-hosts-user-exclude.txt
, чтобы избежать повторения.
Чтобы впоследствии разобраться почему домен был занесен в лист, можно включить autohostlist debug log
.
Он полезен тем, что работает без постоянного просмотра вывода nfqws в режиме debug.
В лог заносятся только основные события, ведущие к занесению хоста в лист.
По логу можно понять как избежать ложных срабатываний и подходит ли вообще вам этот режим.
Можно использовать один autohostlist
с множеством процессов. Все процессы проверяют время модификации файла.
Если файл был изменен в другом процессе, происходит его перечитывание.
Все процессы должны работать под одним uid, чтобы были права доступа на файл.
Скрипты zapret
ведут autohostlist
в ipset/zapret-hosts-auto.txt
.
install_easy.sh
при апгрейде zapret
сохраняет этот файл.
Режим autohostlist
включает в себя режим hostlist
.
Можно вести ipset/zapret-hosts-user.txt
, ipset/zapret-hosts-user-exclude.txt
.
Перед настройкой нужно провести исследование какую бяку устроил вам ваш провайдер.
Нужно выяснить не подменяет ли он DNS и какой метод обхода DPI работает.
В этом вам поможет скрипт blockcheck.sh
.
Если DNS подменяется, но провайдер не перехватывает обращения к сторонним DNS, поменяйте DNS на публичный.
Например: 8.8.8.8, 8.8.4.4, 1.1.1.1, 1.0.0.1, 9.9.9.9
Если DNS подменяется и провайдер перехватывает обращения к сторонним DNS, настройте dnscrypt
.
Еще один эффективный вариант - использовать ресолвер от yandex 77.88.8.88 на нестандартном порту 1253.
Многие провайдеры не анализируют обращения к DNS на нестандартных портах.
blockcheck
если видит подмену DNS автоматически переключается на DoH сервера.
Следует прогнать blockcheck
по нескольким заблокированным сайтам и выявить общий характер блокировок.
Разные сайты могут быть заблокированы по-разному, нужно искать такую технику, которая работает на большинстве.
Чтобы записать вывод blockcheck.sh
в файл, выполните: ./blockcheck.sh | tee /tmp/blockcheck.txt
.
Проанализируйте какие методы дурения DPI работают, в соответствии с ними настройте /opt/zapret/config
.
Имейте в виду, что у провайдеров может быть несколько DPI или запросы могут идти через разные каналы
по методу балансировки нагрузки. Балансировка может означать, что на разных ветках разные DPI или
они находятся на разных хопах. Такая ситуация может выражаться в нестабильности работы обхода.
Дернули несколько раз curl. То работает, то connection reset или редирект. blockcheck.sh
выдает
странноватые результаты. То split работает на 2-м. хопе, то на 4-м. Достоверность результата вызывает сомнения.
В этом случае задайте несколько повторов одного и того же теста. Тест будет считаться успешным только,
если все попытки пройдут успешно.
При использовании autottl
следует протестировать как можно больше разных доменов. Эта техника
может на одних провайдерах работать стабильно, на других потребуется выяснить при каких параметрах
она стабильна, на третьих полный хаос, и проще отказаться.
Blockcheck
имеет 3 уровня сканирования.
quick
- максимально быстро найти хоть что-то работающее.standard
дает возможность провести исследование как и на что реагирует DPI в плане методов обхода.force
дает максимум проверок даже в случаях, когда ресурс работает без обхода или с более простыми стратегиями.Есть ряд других параметров, которые не будут спрашиваться в диалоге, но которые можно переопределить через переменные.
CURL - замена программы curl
CURL_MAX_TIME - время таймаута curl в секундах
CURL_MAX_TIME_QUIC - время таймаута curl для quic. если не задано, используется значение CURL_MAX_TIME
CURL_CMD=1 - показывать команды curl
CURL_OPT - дополнительные параметры curl. `-k` - игнор сертификатов. `-v` - подробный вывод протокола
DOMAINS - список тестируемых доменов через пробел
HTTP_PORT, HTTPS_PORT, QUIC_PORT - номера портов для соответствующих протоколов
SKIP_DNSCHECK=1 - отказ от проверки DNS
SKIP_TPWS=1 - отказ от тестов tpws
SKIP_PKTWS=1 - отказ от тестов nfqws/dvtws/winws
PKTWS_EXTRA, TPWS_EXTRA - дополнительные параметры nfqws/dvtws/winws и tpws
PKTWS_EXTRA_1 .. PKTWS_EXTRA_9, TPWS_EXTRA_1 .. TPWS_EXTRA_9 - отдельно дополнительные параметры, содержащие пробелы
SECURE_DNS=0|1 - принудительно выключить или включить DoH
DOH_SERVERS - список URL DoH через пробел для автоматического выбора работающего сервера
DOH_SERVER - конкретный DoH URL, отказ от поиска
Пример запуска с переменными:\
SECURE_DNS=1 SKIP_TPWS=1 CURL_MAX_TIME=1 CURL=/tmp/curl ./blockcheck.sh
СКАН ПОРТОВ\
Если в системе присутствует совместимый netcat
(ncat от nmap или openbsd ncat. в openwrt по умолчанию нет),
то выполняется сканирование портов http или https всех IP адресов домена.
Если ни один IP не отвечает, то результат очевиден. Можно останавливать сканирование.
Автоматически оно не остановится, потому что netcat-ы недостаточно подробно информируют о причинах ошибки.
Если доступна только часть IP, то можно ожидать хаотичных сбоев, т.к. подключение идет к случайному адресу
из списка.
ПРОВЕРКА НА ЧАСТИЧНЫЙ IP block\
Под частичным блоком подразумевается ситуация, когда коннект на порты есть, но по определенному транспортному
или прикладному протоколу всегда идет реакция DPI вне зависимости от запрашиваемого домена.
Эта проверка так же не выдаст автоматического вердикта/решения, потому что может быть очень много вариаций.
Вместо этого анализ происходящего возложен на самого пользователя или тех, кто будет читать лог.
Суть этой проверки в попытке дернуть неблокированный IP с блокированным доменом и наоборот, анализируя
при этом реакцию DPI. Реакция DPI обычно проявляется в виде таймаута (зависание запроса), connection reset
или http redirect на заглушку. Любой другой вариант скорее всего говорит об отсутствии реакции DPI.
В частности, любые http коды, кроме редиректа, ведущего именно на заглушку, а не куда-то еще.
На TLS - ошибки handshake без задержек.
Ошибка сертификата может говорить как о реакции DPI с MiTM атакой (подмена сертификата), так и
о том, что принимающий сервер неблокированного домена все равно принимает ваш TLS handshake
с чужим доменом,
пытаясь при этом выдать сертификат без запрошенного домена. Требуется дополнительный анализ.
Если на заблокированный домен есть реакция на всех IP адресах, значит есть блокировка по домену.
Если на неблокированный домен есть реакция на IP адресах блокированного домена, значит имеет место блок по IP.
Соответственно, если есть и то, и другое, значит есть и блок по IP, и блок по домену.
Неблокированный домен первым делом проверяется на доступность на оригинальном адресе.
При недоступности тест отменяется, поскольку он будет неинформативен.
Если выяснено, что есть частичный блок по IP на DPI, то скорее всего все остальные тесты будут провалены
вне зависимости от стратегий обхода. Но бывают и некоторые исключения. Например, пробитие через ipv6 option headers
. Или сделать так, чтобы он не мог распознать протокол прикладного уровня.
Дальнейшие тесты могут быть не лишены смысла.
ПРИМЕРЫ БЛОКИРОВКИ ТОЛЬКО ПО ДОМЕНУ БЕЗ БЛОКА ПО IP
> testing iana.org on it's original
!!!!! AVAILABLE !!!!!
> testing rutracker.org on 192.0.43.8 (iana.org)
curl: (28) Operation timed out after 1002 milliseconds with 0 bytes received
> testing iana.org on 172.67.182.196 (rutracker.org)
HTTP/1.1 409 Conflict
> testing iana.org on 104.21.32.39 (rutracker.org)
HTTP/1.1 409 Conflict
> testing iana.org on it's original ip
!!!!! AVAILABLE !!!!!
> testing rutracker.org on 192.0.43.8 (iana.org)
curl: (28) Connection timed out after 1001 milliseconds
> testing iana.org on 172.67.182.196 (rutracker.org)
curl: (35) OpenSSL/3.2.1: error:0A000410:SSL routines::ssl/tls alert handshake failure
> testing iana.org on 104.21.32.39 (rutracker.org)
curl: (35) OpenSSL/3.2.1: error:0A000410:SSL routines::ssl/tls alert handshake failure
> testing iana.org on it's original ip
!!!!! AVAILABLE !!!!!
> testing rutracker.org on 192.0.43.8 (iana.org)
HTTP/1.1 307 Temporary Redirect
Location: https://www.gblnet.net/blocked.php
> testing iana.org on 172.67.182.196 (rutracker.org)
HTTP/1.1 409 Conflict
> testing iana.org on 104.21.32.39 (rutracker.org)
HTTP/1.1 409 Conflict
> testing iana.org on it's original ip
!!!!! AVAILABLE !!!!!
> testing rutracker.org on 192.0.43.8 (iana.org)
curl: (35) Recv failure: Connection reset by peer
> testing iana.org on 172.67.182.196 (rutracker.org)
curl: (35) OpenSSL/3.2.1: error:0A000410:SSL routines::ssl/tls alert handshake failure
> testing iana.org on 104.21.32.39 (rutracker.org)
curl: (35) OpenSSL/3.2.1: error:0A000410:SSL routines::ssl/tls alert handshake failure
ПРИМЕР ПОЛНОГО IP БЛОКА ИЛИ БЛОКА TCP ПОРТА ПРИ ОТСУТСТВИИ БЛОКА ПО ДОМЕНУ
* port block tests ipv4 startmail.com:80
ncat -z -w 1 145.131.90.136 80
145.131.90.136 does not connect. netcat code 1
ncat -z -w 1 145.131.90.152 80
145.131.90.152 does not connect. netcat code 1
* curl_test_http ipv4 startmail.com
- checking without DPI bypass
curl: (28) Connection timed out after 2002 milliseconds
UNAVAILABLE code=28
- IP block tests (requires manual interpretation)
> testing iana.org on it's original ip
!!!!! AVAILABLE !!!!!
> testing startmail.com on 192.0.43.8 (iana.org)
HTTP/1.1 302 Found
Location: https://www.iana.org/
> testing iana.org on 145.131.90.136 (startmail.com)
curl: (28) Connection timed out after 2002 milliseconds
> testing iana.org on 145.131.90.152 (startmail.com)
curl: (28) Connection timed out after 2002 milliseconds
Файл /opt/zapret/config
используется различными компонентами системы и содержит основные настройки.
Его нужно просмотреть и при необходимости отредактировать.
На linux системах можно выбрать использовать iptables
или nftables
.
По умолчанию на традиционных linux выбирается nftables
, если установлен nft.
На openwrt по умолчанию выбирается nftables
на новых версиях с firewall4.
FWTYPE=iptables
На nftables
можно отключить стандартную схему перехвата трафика после NAT и перейти на перехват до NAT.
Это сделает невозможным применение некоторых методов дурения на проходящем трафике как в случае с iptables
.
nfqws начнет получать адреса пакетов из локальной сети и отображать их в логах.
POSTNAT=0
Существует 3 стандартных опции запуска, настраиваемых раздельно и независимо: tpws-socks
, tpws, nfqws.
Их можно использовать как по отдельности, так и вместе. Например, вам надо сделать комбинацию
из методов, доступных только в tpws и только в nfqws. Их можно задействовать вместе.
tpws будет прозрачно локализовывать трафик на системе и применять свое дурение, nfqws будет дурить трафик,
исходящий с самой системы после обработки на tpws.
А можно на эту же систему повесить без параметров socks proxy, чтобы получать доступ к обходу блокировок через прокси.
Таким образом, все 3 режима вполне могут задействоваться вместе.
Так же безусловно и независимо, в добавок к стандартным опциям, применяются все custom скрипты в init.d/{sysv,openwrt,macos}/custom.d
.
Однако, при комбинировании tpws и nfqws с пересечением по L3/L4 протоколам не все так просто , как может показаться на первый взгляд.
Первым всегда работает tpws, за ним - nfqws. На nfqws попадает уже "задуренный" трафик от tpws.
Получается, что дурилка дурит дурилку, и дурилка не срабатывает, потому что ее задурили.
Вот такой веселый момент. nfqws перестает распознавать протоколы и применять методы.
Некоторые методы дурения от tpws nfqws в состоянии распознать и отработать корректно, но большинство - нет.
Решение - использование --dpi-desync-any-protocol
в nfqws и работа как с неизвестным протоколом.
Комбинирование tpws и nfqws является продвинутым вариантом, требующим глубокого понимания происходящего.
Очень желательно проанализировать действия nfqws по --debug
логу. Все ли так, как вы задумали.
Одновременное использование tpws и nfqws без пересечения по L3/L4 (то есть nfqws - udp, tpws - tcp или nfqws - port 443, tpws - port 80 или nfqws - ipv4, tpws - ipv6) проблем не представляет.
tpws-socks
требует настройки параметров tpws, но не требует перехвата трафика.
Остальные опции требуют раздельно настройки перехвата трафика и опции самих демонов.
Каждая опция предполагает запуск одного инстанса соответствующего демона. Все различия методов дурения
для http
, https
, quic
и т.д. должны быть отражены через схему мультистратегий.
В этом смысле настройка похожа на вариант winws
на Windows, а перенос конфигов не должен представлять больших сложностей.
Основное правило настройки перехвата - перехватывайте только необходимый минимум.
Любой перехват лишнего - это бессмысленная нагрузка на вашу систему.
Опции демонов --ipset
использовать запрещено. Это сделано намеренно и искусственно, чтобы не поощрять простой и
работающий, но неэффективный метод на *nix системах. Используйте ipset
-ы режима ядра.
При необходимости пишите и задействуйте custom scripts
.
Настройки демонов можно для удобства писать на нескольких строках, используя двойные или одинарные кавычки.
Чтобы задействовать стандартные обновляемые хост-листы из ipset
, используйте маркер http
, tls
, quic
).