2022-04
:支持多GPU训练,新增各个种类目标数量计算,新增heatmap。
2022-03
:进行了大幅度的更新,支持step、cos学习率下降法、支持adam、sgd优化器选择、支持学习率根据batch_size自适应调整、新增图片裁剪。
BiliBili视频中的原仓库地址为:https://github.com/bubbliiiing/yolox-pytorch/tree/bilibili
2021-10
:创建仓库,支持不同尺寸模型训练、支持大量可调整参数,支持fps、视频预测、批量预测等功能。
模型 | 路径 |
---|---|
YoloV3 | https://github.com/bubbliiiing/yolo3-pytorch |
Efficientnet-Yolo3 | https://github.com/bubbliiiing/efficientnet-yolo3-pytorch |
YoloV4 | https://github.com/bubbliiiing/yolov4-pytorch |
YoloV4-tiny | https://github.com/bubbliiiing/yolov4-tiny-pytorch |
Mobilenet-Yolov4 | https://github.com/bubbliiiing/mobilenet-yolov4-pytorch |
YoloV5-V5.0 | https://github.com/bubbliiiing/yolov5-pytorch |
YoloV5-V6.1 | https://github.com/bubbliiiing/yolov5-v6.1-pytorch |
YoloX | https://github.com/bubbliiiing/yolox-pytorch |
YoloV7 | https://github.com/bubbliiiing/yolov7-pytorch |
YoloV7-tiny | https://github.com/bubbliiiing/yolov7-tiny-pytorch |
训练数据集 | 权值文件名称 | 测试数据集 | 输入图片大小 | mAP 0.5:0.95 | mAP 0.5 |
---|---|---|---|---|---|
COCO-Train2017 | yolox_nano.pth | COCO-Val2017 | 640x640 | 27.4 | 44.5 |
COCO-Train2017 | yolox_tiny.pth | COCO-Val2017 | 640x640 | 34.7 | 53.6 |
COCO-Train2017 | yolox_s.pth | COCO-Val2017 | 640x640 | 38.2 | 57.7 |
COCO-Train2017 | yolox_m.pth | COCO-Val2017 | 640x640 | 44.8 | 63.9 |
COCO-Train2017 | yolox_l.pth | COCO-Val2017 | 640x640 | 47.9 | 66.6 |
COCO-Train2017 | yolox_x.pth | COCO-Val2017 | 640x640 | 49.0 | 67.7 |
pytorch==1.2.0
训练所需的权值可在百度网盘中下载。
链接: https://pan.baidu.com/s/1bi2UBwwIHES0OpLeyYuBFg
提取码: f4ni
VOC数据集下载地址如下,里面已经包括了训练集、测试集、验证集(与测试集一样),无需再次划分:
链接: https://pan.baidu.com/s/19Mw2u_df_nBzsC2lg20fQA
提取码: j5ge
数据集的准备
本文使用VOC格式进行训练,训练前需要下载好VOC07+12的数据集,解压后放在根目录
数据集的处理
修改voc_annotation.py里面的annotation_mode=2,运行voc_annotation.py生成根目录下的2007_train.txt和2007_val.txt。
开始网络训练
train.py的默认参数用于训练VOC数据集,直接运行train.py即可开始训练。
训练结果预测
训练结果预测需要用到两个文件,分别是yolo.py和predict.py。我们首先需要去yolo.py里面修改model_path以及classes_path,这两个参数必须要修改。
model_path指向训练好的权值文件,在logs文件夹里。
classes_path指向检测类别所对应的txt。
完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。
数据集的准备
本文使用VOC格式进行训练,训练前需要自己制作好数据集,
训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。
训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
数据集的处理
在完成数据集的摆放之后,我们需要利用voc_annotation.py获得训练用的2007_train.txt和2007_val.txt。
修改voc_annotation.py里面的参数。第一次训练可以仅修改classes_path,classes_path用于指向检测类别所对应的txt。
训练自己的数据集时,可以自己建立一个cls_classes.txt,里面写自己所需要区分的类别。
model_data/cls_classes.txt文件内容为:
cat
dog
...
修改voc_annotation.py中的classes_path,使其对应cls_classes.txt,并运行voc_annotation.py。
开始网络训练
训练的参数较多,均在train.py中,大家可以在下载库后仔细看注释,其中最重要的部分依然是train.py里的classes_path。
classes_path用于指向检测类别所对应的txt,这个txt和voc_annotation.py里面的txt一样!训练自己的数据集必须要修改!
修改完classes_path后就可以运行train.py开始训练了,在训练多个epoch后,权值会生成在logs文件夹中。
训练结果预测
训练结果预测需要用到两个文件,分别是yolo.py和predict.py。在yolo.py里面修改model_path以及classes_path。
model_path指向训练好的权值文件,在logs文件夹里。
classes_path指向检测类别所对应的txt。
完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。
img/street.jpg
_defaults = {
#--------------------------------------------------------------------------#
# 使用自己训练好的模型进行预测一定要修改model_path和classes_path!
# model_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt
# 如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改
#--------------------------------------------------------------------------#
"model_path" : 'model_data/yolox_s.pth',
"classes_path" : 'model_data/coco_classes.txt',
#---------------------------------------------------------------------#
# 输入图片的大小,必须为32的倍数。
#---------------------------------------------------------------------#
"input_shape" : [640, 640],
#---------------------------------------------------------------------#
# 所使用的YoloX的版本。nano、tiny、s、m、l、x
#---------------------------------------------------------------------#
"phi" : 's',
#---------------------------------------------------------------------#
# 只有得分大于置信度的预测框会被保留下来
#---------------------------------------------------------------------#
"confidence" : 0.5,
#---------------------------------------------------------------------#
# 非极大抑制所用到的nms_iou大小
#---------------------------------------------------------------------#
"nms_iou" : 0.3,
#---------------------------------------------------------------------#
# 该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize,
# 在多次测试后,发现关闭letterbox_image直接resize的效果更好
#---------------------------------------------------------------------#
"letterbox_image" : True,
#-------------------------------#
# 是否使用Cuda
# 没有GPU可以设置成False
#-------------------------------#
"cuda" : True,
}
img/street.jpg