bytedance / MRECG

Apache License 2.0
34 stars 3 forks source link
research

Solving Oscillation Problem in Post-Training Quantization Through a Theoretical Perspective (CVPR 2023) (Link)

Overview

overview

Prerequisites

Getting Started

Requirements

Data preparation

Add the imagenet path to the "data.path" in the config file.

Run MRECG

Results

Method\Model W/A Res18 Res50 MBV2×1.0 MBV2×0.75 MBV2×0.5 MBV2×0.35 Reg600M
Full Prec. 32/32 71.01 76.63 72.20 69.95 64.60 60.08 73.52
Pretrained - link link link link link link link
Ours+BRECQ 4/4 69.06 74.84 68.56 64.55 55.26 50.67 -
Ours+BRECQ 2/4 65.61 70.04 58.49 52.50 41.16 35.46 -
Ours+BRECQ 3/3 65.64 70.68 57.14 50.21 35.11 30.26 -
Ours+BRECQ 2/2 52.02 43.72 13.84 9.46 3.43 3.22 -
Ours+QDROP 4/4 69.46 75.35 68.84 64.39 55.64 50.94 71.22
Ours+QDROP 2/4 66.18 70.53 57.85 53.71 40.09 35.85 65.16
Ours+QDROP 3/3 66.30 71.92 58.40 51.78 38.43 32.96 66.08
Ours+QDROP 2/2 54.46 56.82 14.44 11.40 4.18 3.09 43.67

Due to the presence of random numbers in the experiment, the actual model accuracy may be slightly high or low.

Acknowledgements

Our code relies on the MQBench package.

Reference

@article{ma2023solving,
  title={Solving Oscillation Problem in Post-Training Quantization Through a Theoretical Perspective},
  author={Yuexiao Ma and Huixia Li and Xiawu Zheng and Xuefeng Xiao and Rui Wang and Shilei Wen and Xin Pan and Fei Chao and Rongrong Ji},
  journal={arXiv preprint arXiv:2303.11906},
  year={2023}
}