A cyber security research environment for training and development of security human and autonomous agents. Contains a common interface for both emulated, using cloud based virtual machines, and simulated network environments.
Install CybORG locally using pip from the main directory that contains this readme
pip install -e .
Create a CybORG environment with the DroneSwarm Scenario that is used for CAGE Challenge 3:
from CybORG import CybORG
from CybORG.Simulator.Scenarios.DroneSwarmScenarioGenerator import DroneSwarmScenarioGenerator
sg = DroneSwarmScenarioGenerator()
cyborg = CybORG(sg, 'sim')
The default_red_agent parameter of the DroneSwarmScenarioGenerator allows you to alter the red agent behaviour. Here is an example of a red agent that randomly selects a drone to exploit and seize control of:
from CybORG import CybORG
from CybORG.Simulator.Scenarios.DroneSwarmScenarioGenerator import DroneSwarmScenarioGenerator
from CybORG.Agents.SimpleAgents.DroneRedAgent import DroneRedAgent
red_agent = DroneRedAgent
sg = DroneSwarmScenarioGenerator(default_red_agent=red_agent)
cyborg = CybORG(sg, 'sim')
To alter the interface with CybORG, wrappers are avaliable.
The OpenAI Gym Wrapper allows interaction with a single external agent. The name of that external agent must be specified at the creation of the OpenAI Gym Wrapper.
from CybORG import CybORG
from CybORG.Simulator.Scenarios.DroneSwarmScenarioGenerator import DroneSwarmScenarioGenerator
from CybORG.Agents.Wrappers.OpenAIGymWrapper import OpenAIGymWrapper
from CybORG.Agents.Wrappers.FixedFlatWrapper import FixedFlatWrapper
sg = DroneSwarmScenarioGenerator()
cyborg = CybORG(sg, 'sim')
agent_name = 'blue_agent_0'
open_ai_wrapped_cyborg = OpenAIGymWrapper(agent_name=agent_name, env=FixedFlatWrapper(cyborg))
observation, reward, done, info = open_ai_wrapped_cyborg.step(0)
The PettingZoo Parallel Wrapper allows multiple agents to interact with the environment simultaneously.
from CybORG import CybORG
from CybORG.Simulator.Scenarios.DroneSwarmScenarioGenerator import DroneSwarmScenarioGenerator
from CybORG.Agents.Wrappers.PettingZooParallelWrapper import PettingZooParallelWrapper
sg = DroneSwarmScenarioGenerator()
cyborg = CybORG(sg, 'sim')
open_ai_wrapped_cyborg = PettingZooParallelWrapper(cyborg)
observations, rewards, dones, infos = open_ai_wrapped_cyborg.step({'blue_agent_0': 0, 'blue_agent_1': 0})
from CybORG import CybORG
from CybORG.Simulator.Scenarios.DroneSwarmScenarioGenerator import DroneSwarmScenarioGenerator
from CybORG.Agents.Wrappers.PettingZooParallelWrapper import PettingZooParallelWrapper
from ray.rllib.env import ParallelPettingZooEnv
from ray.tune import register_env
def env_creator_CC3(env_config: dict):
sg = DroneSwarmScenarioGenerator()
cyborg = CybORG(scenario_generator=sg, environment='sim')
env = ParallelPettingZooEnv(PettingZooParallelWrapper(env=cyborg))
return env
register_env(name="CC3", env_creator=env_creator_CC3)
To evaluate an agent's performance please use the evaluation script and the submission file.
Please see the submission instructions for further information on submission and evaluation of agents.
For further guidance on the CybORG environment please refer to the tutorial notebook series.. For information on the CAGE challenges, please refer to the following pages: CAGE Challenge 1 CAGE Challenge 2 CAGE Challenge 3 CAGE Challenge 4
@misc{cage_cyborg_2022,
Title = {Cyber Operations Research Gym},
Note = {Created by Maxwell Standen, David Bowman, Son Hoang, Toby Richer, Martin Lucas, Richard Van Tassel, Phillip Vu, Mitchell Kiely, KC C., Natalie Konschnik, Joshua Collyer},
Publisher = {GitHub},
Howpublished = {\url{https://github.com/cage-challenge/CybORG}},
Year = {2022}
}