caizhongang / SMPLer-X

Official Code for "SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation"
https://caizhongang.github.io/projects/SMPLer-X/
Other
1.01k stars 73 forks source link

SMPLer-X: Scaling Up Expressive Human Pose and Shape Estimation

Teaser

Useful links

[Homepage]      [HuggingFace]      [arXiv]      [Video]      [MMHuman3D]

News

Gallery

001.gif 001.gif 001.gif
001.gif 001.gif 001.gif

Visualization

Install

conda create -n smplerx python=3.8 -y
conda activate smplerx
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 -c pytorch -y
pip install mmcv-full==1.7.1 -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.12.0/index.html
pip install -r requirements.txt

# install mmpose
cd main/transformer_utils
pip install -v -e .
cd ../..

Docker Support (Early Stage)

docker pull wcwcw/smplerx_inference:v0.2
docker run  --gpus all -v <vid_input_folder>:/smplerx_inference/vid_input \
        -v <vid_output_folder>:/smplerx_inference/vid_output \
        wcwcw/smplerx_inference:v0.2 --vid <video_name>.mp4
# Currently any customization need to be applied to /smplerx_inference/smplerx/inference_docker.py

Pretrained Models

Model Backbone #Datasets #Inst. #Params MPE Download FPS
SMPLer-X-S32 ViT-S 32 4.5M 32M 82.6 model 36.17
SMPLer-X-B32 ViT-B 32 4.5M 103M 74.3 model 33.09
SMPLer-X-L32 ViT-L 32 4.5M 327M 66.2 model 24.44
SMPLer-X-H32 ViT-H 32 4.5M 662M 63.0 model 17.47
SMPLer-X-H32* ViT-H 32 4.5M 662M 59.7 model 17.47

Preparation

The file structure should be like:

SMPLer-X/
├── common/
│   └── utils/
│       └── human_model_files/  # body model
│           ├── smpl/
│           │   ├──SMPL_NEUTRAL.pkl
│           │   ├──SMPL_MALE.pkl
│           │   └──SMPL_FEMALE.pkl
│           └── smplx/
│               ├──MANO_SMPLX_vertex_ids.pkl
│               ├──SMPL-X__FLAME_vertex_ids.npy
│               ├──SMPLX_NEUTRAL.pkl
│               ├──SMPLX_to_J14.pkl
│               ├──SMPLX_NEUTRAL.npz
│               ├──SMPLX_MALE.npz
│               └──SMPLX_FEMALE.npz
├── data/
├── main/
├── demo/  
│   ├── videos/       
│   ├── images/      
│   └── results/ 
├── pretrained_models/  # pretrained ViT-Pose, SMPLer_X and mmdet models
│   ├── mmdet/
│   │   ├──faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
│   │   └──mmdet_faster_rcnn_r50_fpn_coco.py
│   ├── smpler_x_s32.pth.tar
│   ├── smpler_x_b32.pth.tar
│   ├── smpler_x_l32.pth.tar
│   ├── smpler_x_h32.pth.tar
│   ├── vitpose_small.pth
│   ├── vitpose_base.pth
│   ├── vitpose_large.pth
│   └── vitpose_huge.pth
└── dataset/  
    ├── AGORA/       
    ├── ARCTIC/      
    ├── BEDLAM/      
    ├── Behave/      
    ├── CHI3D/       
    ├── CrowdPose/   
    ├── EgoBody/     
    ├── EHF/         
    ├── FIT3D/                
    ├── GTA_Human2/           
    ├── Human36M/             
    ├── HumanSC3D/            
    ├── InstaVariety/         
    ├── LSPET/                
    ├── MPII/                 
    ├── MPI_INF_3DHP/         
    ├── MSCOCO/               
    ├── MTP/                    
    ├── MuCo/                   
    ├── OCHuman/                
    ├── PoseTrack/                
    ├── PROX/                   
    ├── PW3D/                   
    ├── RenBody/
    ├── RICH/
    ├── SPEC/
    ├── SSP3D/
    ├── SynBody/
    ├── Talkshow/
    ├── UBody/
    ├── UP3D/
    └── preprocessed_datasets/  # HumanData files

Inference

cd main
sh slurm_inference.sh {VIDEO_FILE} {FORMAT} {FPS} {PRETRAINED_CKPT} 

# For inferencing test_video.mp4 (24FPS) with smpler_x_h32
sh slurm_inference.sh test_video mp4 24 smpler_x_h32

2D Smplx Overlay

We provide a lightweight visualization script for mesh overlay based on pyrender.

cd main && python render.py \ --data_path {SMPLERX INFERENCE DIR} --seq {VIDEO NAME} \ --image_path {SMPLERX INFERENCE DIR}/{VIDEO NAME} \ --render_biggest_person False


## Training
```bash
cd main
sh slurm_train.sh {JOB_NAME} {NUM_GPU} {CONFIG_FILE}

# For training SMPLer-X-H32 with 16 GPUS
sh slurm_train.sh smpler_x_h32 16 config_smpler_x_h32.py

Testing

# To eval the model ../output/{TRAIN_OUTPUT_DIR}/model_dump/snapshot_{CKPT_ID}.pth.tar 
# with confing ../output/{TRAIN_OUTPUT_DIR}/code/config_base.py
cd main
sh slurm_test.sh {JOB_NAME} {NUM_GPU} {TRAIN_OUTPUT_DIR} {CKPT_ID}

FAQ

References

Citation

@inproceedings{cai2023smplerx,
    title={{SMPLer-X}: Scaling up expressive human pose and shape estimation},
    author={Cai, Zhongang and Yin, Wanqi and Zeng, Ailing and Wei, Chen and Sun, Qingping and Yanjun, Wang and Pang, Hui En and Mei, Haiyi and Zhang, Mingyuan and Zhang, Lei and Loy, Chen Change and Yang, Lei and Liu, Ziwei},
    booktitle={Advances in Neural Information Processing Systems},
    year={2023}
}