This package aims to provide the dataset for environmental fines and notices from the Brazilian Institute for the Environment and Renewable Natural Resources (IBAMA).
You can visit the IBAMA repository in the Brazilian Open Data Portal.
This package can be installed via GitHub using
the following code in R
:
# install.packages("remotes")
remotes::install_github("cccneto/Ibamam")
The {Ibamam}
package has one function available:
get_dataset_ibamam()
. This function returns a tibble, containing
several columns described in the documentation of the
function.
This function has three arguments: dataset
, uf
and clean
.
dataset
can receive one of the two values: distribuidas
or
arrecadadas
. Use distribuidas
to get data of the environmental
fines applied by Ibama. Use arrecadadas
to get data of the
environmental fines collected by Ibama (which means that the fine
has been paid).
uf
is the abreviation of the name of the states (two letters in
lower case) that data will be obtained. The default value is
"all"
, so all data from all the states of Brazil will be returned
by default. Please notice that, If you use the default value, it
might take several minutes to execute.
clean
is whether the dataset should be cleaned or not. If TRUE
,
the dataset will be cleaned. If FALSE
, the returned dataset will
be the original version, without modifications. Default is TRUE
.
Examples on how to use this function:
library(Ibamam)
# get fines applied by IBAMA in Pará
fines_applied_Para <- get_dataset_ibamam(dataset = "distribuidas", uf = "PA")
dplyr::glimpse(fines_applied_Para)
#> Rows: 59,703
#> Columns: 16
#> $ dataAuto <date> 2021-04-23, 2020-09-28, 2021-02-10, 2020-0…
#> $ nomeMunicipio <chr> "PLACAS", "RUROPOLIS", "MARAPANIM", "PRAINH…
#> $ nomeMunicipio_geobr <chr> "Placas", "Rurópolis", "Marapanim", "Prainh…
#> $ codigoMunicipio <chr> "1505650", "1506195", "1504406", "1506005",…
#> $ numAI <chr> "ABYX5X27 - ", "AB1FQ5MJ - ", "AD6DF079 - "…
#> $ tipoInfracao <fct> Outras, Flora, Unidades de conservação, Flo…
#> $ ultimaAtualizacaoRelatorio <dttm> 2021-05-29 19:15:00, 2021-05-29 19:15:00, …
#> $ uf <chr> "PA", "PA", "PA", "PA", "PA", "PA", "PA", "…
#> $ situacaoDebito <chr> "Para homologação/prazo de defesa", "Para h…
#> $ tipoAuto <fct> Multa, Multa, Multa, Multa, Multa, Multa, M…
#> $ moeda <fct> Real, Real, Real, Real, Real, Real, Real, R…
#> $ enquadramentoLegal <fct> "Decreto 6514/2008 - Artigo 79", "Decreto 6…
#> $ nomeRazaoSocial <chr> "ILSON ALVES DE FARIA", "ABIDIEL CELESTINO …
#> $ cpfCnpj <chr> "651.179.132-72", "516.819.352-87", "667.55…
#> $ valorAuto <dbl> 10000.0, 8000.0, 2000.0, 180729.9, 2015000.…
#> $ enquadramentoJuridico <fct> CPF, CPF, CPF, CNPJ, CPF, CPF, CPF, CNPJ, C…
# get fines collected by IBAMA in Pará
fines_collected_Para <- get_dataset_ibamam(dataset = "arrecadadas", uf = "PA")
dplyr::glimpse(fines_collected_Para)
#> Rows: 73,686
#> Columns: 21
#> $ dataAuto <date> 2019-12-01, 2020-03-20, 2020-03-10, 2020-0…
#> $ nomeMunicipio <chr> "PACAJA", "ANANINDEUA", "ANANINDEUA", "ANAN…
#> $ nomeMunicipio_geobr <chr> "Pacajá", "Ananindeua", "Ananindeua", "Anan…
#> $ codigoMunicipio <chr> "1505486", "1500800", "1500800", "1500800",…
#> $ dataPagamento <date> 2020-12-16, 2021-02-17, 2021-02-22, 2021-0…
#> $ valorPago <dbl> 8400.32, 863.86, 866.96, 863.86, 863.86, 10…
#> $ numAI <chr> "C7AZB2I8 - ", "DB3W3QKR - ", "GUN4XIPO - "…
#> $ tipoInfracao <fct> Flora, Outras, Outras, Outras, Outras, Flor…
#> $ ultimaAtualizacaoRelatorio <dttm> 2021-05-29 19:26:00, 2021-05-29 19:26:00, …
#> $ parcela <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3…
#> $ quantidadeParcela <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 30, 30,…
#> $ uf <chr> "PA", "PA", "PA", "PA", "PA", "PA", "PA", "…
#> $ tipoAuto <fct> Multa, Multa, Multa, Multa, Multa, Multa, M…
#> $ moeda <fct> Real, Real, Real, Real, Real, Real, Real, R…
#> $ statusDebito <chr> "Quitado. Baixa automática", "Quitado. Baix…
#> $ enquadramentoLegal <fct> "Decreto 6514/2008 - Artigo 47", "Decreto 6…
#> $ nomeRazaoSocial <chr> "SIMONE SOUZA MORAES", "JATEX TRANSPORTES L…
#> $ cpfCnpj <chr> "019.077.525-44", "39.124.797/0004-17", "43…
#> $ valorbaseParcela <dbl> 11524.50, 1200.00, 1200.00, 1200.00, 1200.0…
#> $ valorAuto <dbl> 11524.5, 1200.0, 1200.0, 1200.0, 1200.0, 15…
#> $ enquadramentoJuridico <fct> CPF, CNPJ, CNPJ, CNPJ, CNPJ, CPF, CNPJ, CNP…
If you want to get the data for the whole country (Brazil), do not write anything in the argument uf.
# get fines applied by IBAMA in Brazil
fines_applied_Brasil <- get_dataset_ibamam(dataset = "distribuidas")
# get fines collected by IBAMA in Brazil
fines_collected_Brasil <- get_dataset_ibamam(dataset = "arrecadadas")
If you want to get the data for more than one state, but not for the whole country, use a vector in the argument uf with the abbreviations of the name of the states.
# get fines applied by IBAMA in Southeast of Brazil
fines_applied_southeast <- get_dataset_ibamam(dataset = "distribuidas", uf = c("SP", "RJ", "ES", "MG"))
# get fines collected by IBAMA in Southeast of Brazil
fines_collected_southeast <- get_dataset_ibamam(dataset = "arrecadadas", uf = c("SP", "RJ", "ES", "MG"))
If you want to access the original data, without the cleaning steps, use
the argument clean = FALSE
. Example:
# get fines applied by IBAMA in São Paulo, without cleaning the dataset
untidy_fines_applied_SP <- get_dataset_ibamam(dataset = "distribuidas", uf = "SP", clean = FALSE)
dplyr::glimpse(untidy_fines_applied_SP)
#> Rows: 34,598
#> Columns: 13
#> $ dataAuto <chr> "22/04/2020", "17/10/2019", "27/01/2020", "…
#> $ municipio <chr> "SAO JOSE DO RIO PRETO", "MARILIA", "SAO JO…
#> $ numAI <chr> "AC6FODNB - ", "ADX7F7IM - ", "AEGEYX7V - "…
#> $ tipoInfracao <chr> "Fauna", "Fauna", "Fauna", "Controle ambien…
#> $ ultimaAtualizacaoRelatorio <chr> "29/05/2021 19:23", "29/05/2021 19:23", "29…
#> $ uf <chr> "SP", "SP", "SP", "SP", "SP", "SP", "SP", "…
#> $ situacaoDebito <chr> "Quitado. Baixa automática", "Cancelado", "…
#> $ tipoAuto <chr> "Multa", "Multa", "Multa", "Multa", "Multa"…
#> $ moeda <chr> "Real", "Real", "Real", "Real", "Real", "Re…
#> $ enquadramentoLegal <chr> "Decreto 6514/2008 - Artigo 3º, Instrução N…
#> $ nomeRazaoSocial <chr> "JOSE ELIEZER DO PRADO DOS SANTOS", "VALTER…
#> $ cpfCnpj <chr> "368.573.748-13", "063.360.978-11", "102.74…
#> $ valorAuto <dbl> 500, 500, 500, 45000, 1300, 1300, 400500, 5…
By default, the function get_dataset_ibamam()
will use clean = TRUE
and perform the following cleaning steps:
Colunms dataAuto
, ultimaAtualizacaoRelatorio
, dataPagamento
are transformed from class character
to class date
.
Colunms tipoInfracao
, tipoAuto
, moeda
, enquadramentoLegal
are transformed from class character
to class factor
.
Column enquadramentoJuridico
is created from the cpfCnpj
: if
cpfCnpj
has 14 characteres or less, is “CPF”, else is “CNPJ”.
Column municipio
is mutated into nomeMunicipio
, and several
cleanings is made in order to be possible to join with the names of
municipalities in the package geobr
.
Join the dataset with the result of the package geobr
, so the
cleaned dataset has a column with the IBGE code of the municipality,
called codigoMunicipio
.
If you want to access the original data (without the cleaning steps),
use the argument clean = FALSE
.
“CRUZ NETO, Claudiano C., MILZ, Beatriz, MACEDO, Samuel (2021). Ibamam: Pacote para tratamento da Base de dados para multas e autuações ambientais aplicadas pelo Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis - Brasil. https://doi.org/10.5281/zenodo.4509344”.